Development of diagnostic systems for ATF operation/experiments

T. Watanabe, ATF

Measurement of mic	robunches by CTR/CDR* techniques	
Applications	 Plasma acceleration experiment Pick-up of a microbunch from microbunch train etc. 	

* CTR/CDR : Coherent Transition/Diffraction Radiation

Promising schemes (OTRI, ODTRI, cavity, etc.) have been studied and developed.

- Non-destructive measurement for e-beam/laser
- High resolution
- Energy independence
- Simultaneous observation of beam position/profile
- Small setup (w/o interfering laser/beam optics)
- Easy handling (large number of photons etc.)
- Single shot measurement
- Relative angle measurement against x-ray detector

Cherenkov radiation

X-axis[a.u.]

Beam angle monitor

- estimation -

0	Scattering-Diffraction Estimator					
_		Mat	erial Para	neter input		
Note :	: Some paramete "Parameter inpu	ers are assun It" tab.	Fused Silica ned. For precise	input of param	eters, please o	lick
Beam B	Energy [MeV]	65		Beam S	ize [um]	300 💌
Wavele	ength [nm]	500	•	Focal le	ngth [mm]	100 💌
						- Scattering
5.00 002						
Line wid [mm]	3					 Diffraction 1mRad
Line wic [mm]	2					 Diffraction 1mRad
Line wid [mm] Calculate	dth 321	/				 Diffraction 1mRad
Line wic [mm] Calculate	dth 3 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2	0.5	1	1.5	2	 Diffraction 1mRad

Beam scattering Diffraction Optimum thickness 65 MeV -> 100um^t

Resolution ~ 0.8 mRad?

under assumption that the resolution is 10 times smaller than line width.

~8x10⁹ photons / 100 pC w/o bandpass filter

Beam angle monitor

- estimation -

	Material Parameter input					
Note : Si "Pi	ome parameter arameter input	rs are assu " tab.	Fused Si med. For pr	lica 🛟	rameters, please c	lick
Beam En	ergy [MeV]	1000		Bear	m Size [um]	300 💌
Waveleng	Wavelength [nm]			Foca	al length [mm]	100
Line widtł [mm]	n 3					 Scattering Diffraction 1mRad
Calculate	2					
				1.5	<u> </u>	

Optimum thickness 1 GeV -> 700um^t

Resolution ~ 0.1 mRad?

under assumption that the resolution is 10 times smaller than line width.

 $\sim 6 \ x \ 10^{10} \ photons / \ 100 \ pC$ w/o band-pass filter

Beam angle monitor - experiment -- Radiation intensity - Beam scattering Preliminary experiment with 1-2 mm^t fused silica - Diffraction - Chromatic aberration **Fused Silica** Beam line 1 \geq **GPOP-UP3 GPOP-UP4** (GPOP-UP2) (GPOP-UP2.3) Lens

CCD

Measurements of microbunching

*Vitaly's presentation

Experimental observation and characterization of UR/CTR

*UR : Undulator Radiation

[#] : order of publication

Interferogram and spectrum of CTR from 1 fs microbunches

Interferogram and spectrum of CTR

Red : 1 fsBlue : 5 fs

Assumption : full band, same charge, Gaussian distribution

Interferogram of CTR

Expected results and difficulties

SASE-FEL	Bunching factors
IFEL	Macro/micro-pulse durations/distributions

- Macropulse distribution (cf. Effect of CSR)
- Microbunch duration (cf. Effect of space charge)
- Difference between macropulse center and edges
- Shot-noise of CTR

could be measured.

** It is difficult to see microbunch distribution for microbunch train.

Microbunching and measurement

*Vitaly's presentation

Development of diagnostic systems for ATF operation/experiments

T. Watanabe, ATF

Measurements of mi	crobunches by CTR/CDR* techniques	
Applications	 Plasma acceleration experiment Pick-up of a microbunch from microbunch train etc. 	

* CTR/CDR : Coherent Transition/Diffraction Radiation

Observation of Cherenkov radiation @ UT, Japan

Observation of dispersion

E ₀ [MeV]	D _x [mm]	D _{px} [rad]	D _x Δp/p [mm]	D _{px} Δp/p [mrad]
59.4	-49	-9	0.5	0.09
60.0	11	4	0.1	0.04
60.6	71	18	0.7	0.18

 $* \Delta p/p = 1 \%$

How about non-destructive measurement?

Thin radiator with small hole might be useful.

The main beam could emit Cherenkov radiation.

Halo beam can emit Cherenkov radiation.

Interferogram and spectrum of COTR

3fs microbunch

