



## Multi-bunch Plasma Wakefield Experiments

#### Presented by Patric Muggli, USC

Efthymios Kallos, Tom Katsouleas, Patric Muggli USC, Los Angeles, California

Marcus Babzien, Ilan Ben-Zvi, Karl Kusche, Igor Pavlishin, Igor Pogorelsky, Daniil Stolyarov, Vitaly Yakimenko Brookhaven National Laboratory, Upton, Long Island, NY

Wayne D. Kimura, STI Optronics, Inc., Bellevue, WA

P. Muggli, ATF Users Meeting 07/05/07

Work supported by US DoE







- Introduction to the plasma wakefield accelerator (PWFA)
- Single bunch results
- Multi-bunch experiments (2-150)
- Two bunches at ATF
- Plasma source
- Experimental results / comparison with theory
- Summary / Conclusions



 Plasma wave/wake excited by a relativistic particle bunch
Plasma e<sup>-</sup> expelled by space charge forces => energy loss + focusing

Plasma e<sup>-</sup> rush back on axis

=> energy gain

Plasma Wakefield Accelerator (PWFA) = Energy Transformer

Booster for high energy accelerator?



Vol 445 15 February 2007 doi:10.1038/nature05538



#### LETTERS

nature

### Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator

Ian Blumenfeld<sup>1</sup>, Christopher E. Clayton<sup>2</sup>, Franz-Josef Decker<sup>1</sup>, Mark J. Hogan<sup>1</sup>, Chengkun Huang<sup>2</sup>, Rasmus Ischebeck<sup>1</sup>, Richard Iverson<sup>1</sup>, Chandrashekhar Joshi<sup>2</sup>, Thomas Katsouleas<sup>3</sup>, Neil Kirby<sup>1</sup>, Wei Lu<sup>2</sup>, Kenneth A. Marsh<sup>2</sup>, Warren B. Mori<sup>2</sup>, Patric Muggli<sup>3</sup>, Erdem Oz<sup>3</sup>, Robert H. Siemann<sup>1</sup>, Dieter Walz<sup>1</sup> & Miaomiao Zhou<sup>2</sup>



SLAC Beam:  $E_0=28.5 \text{ GeV}$   $\sigma_z\approx 20 \ \mu\text{m}$ N=1.8x10<sup>10</sup> e<sup>-</sup>  $n_e=2.7x10^{17} \text{ cm}^{-3}$ L=90 cm

42 to 84 GeV in 90 cm Energy Doubling





P. Muggli, ATF Users Meeting 07/05/07



#### Cohesive Acceleration and Focusing of Relativistic Electrons in Overdense Plasma

V. Yakimenko,<sup>1</sup> I.V. Pogorelsky,<sup>1</sup> I.V. Pavlishin,<sup>1</sup> I. Ben-Zvi,<sup>1</sup> K. Kusche,<sup>1</sup> Yu. Eidelman,<sup>1</sup> T. Hirose,<sup>2</sup> T. Kumita,<sup>3</sup> Y. Kamiya,<sup>3</sup> J. Urakawa,<sup>4</sup> B. Greenberg,<sup>5</sup> and A. Zigler<sup>5</sup>



FIG. 4 (color). Spectrometer images, showing intensity in a combined false-color and contour plot. Energy is shown on the horizontal axis and transverse size in the vertical axis: (a) plasma off, (b) plasma on,  $\Delta t = 3 \ \mu$ s.

ATF 300 pC, 1.3 ps: gain 0.6 MeV over 17 mm plasma at n<sub>e</sub>~5x10<sup>16</sup> cm<sup>-3</sup> Accelerating gradient: 35 MV/m Continuous energy spread P. Muggli, ATF Users Meeting 07/05/07





Components available on ATF beam line 1









Difficult to reach 10<sup>19</sup> cm<sup>-3</sup> in capillary (D. Stolyarov, yesterday)

Larger bunch spacing  $\Delta z \ll$  lower n<sub>e</sub>

This morning, W. Kimura: "Generation of Tunable Micro-bunch Train"

Choice of  $\Delta z \ll$  choice of  $n_e$ Choice of number of bunches Generation of witness bunch Beyond energy doubling (application to high energy accelerator, ILC?)

Two-bunch experiment

Two-bunch parameters fixed (length, delay, charge, ...)

Vary plasma density  $n_{\rm e}$  to vary relative phase of witness bunch in the accelerating structure

Accelerating gradient varies with n<sub>e</sub>

Narrow energy spread?





**FIGURE 2.** Cartoon of chicane/dogleg system showing a possible scenario for the double-bunch formation process.



**FIGURE 3.** Raw energy spectrums of double-bunch *e*-beam. Energy dispersion increases to the left. (a) Before the chicane and without compression. Energy spread is  $\sim 4\%$  FWHM. (b) At the highenergy slit located downstream of the chicane. (c) At the spectrometer at the end of the beamline.



**FIGURE 7.** Example of raw data from CTR interferometer (circles) and the curve fits to the data (solid line) calculated from the autocorrelation integral [2]. (a) Single bunch. (b) Double bunches.



Use PWFA interaction to determine time sequence! (High=Driver, Low=Witness)









Vary discharge-beam delay to vary the plasma density





. .

BROOKHAVEN

STHOPTRONICS





#### **ENERGY LOSS / GAIN**

2-bunch  $n_e=4x10^{15} \text{ cm}^{-3}, L=6 \text{ mm}$   $\lambda_p=530 \ \mu\text{m} > \Delta z$   $\Delta E_D \approx -1.1 \text{ MeV}$   $\Delta E_W \approx -1.3 \text{ MeV}$  $G \approx -200 \text{ MeV/m} (L=6 \text{ mm})$ 









#### **ENERGY LOSS / GAIN**



2-bunch  $n_e=1x10^{16} \text{ cm}^{-3}$ , L=6 mm  $\lambda_p=334 \ \mu\text{m}\approx \Delta z$   $\Delta E_p\approx -0.9 \text{ MeV}$   $\Delta E_W\approx +0.9 \text{ MeV}$  $G\approx +150 \text{ MeV/m}$  (L=6 mm)



P. Muggli, ATF Users





#### **ENERGY LOSS / GAIN**

1-bunch (Low)  $n_e = 1 \times 10^{16} \text{ cm}^{-3}$ , L=6 mm  $\Delta E_W \approx -1.0 \text{ MeV}$ G $\approx -165 \text{ MeV/m}$  (L=6 mm)



Low energy is 2<sup>nd</sup> in time: Loses by itself Gains with other bunch







# Agreement with 2D model Maximum accelerating gradient (0.9+1.0)MeV/6mm=316MeV/m



### SUMMARY / CONCLUSION



- Used beam break-up for two-bunch PWFA experiment at ATF
- Varied n<sub>e</sub> to vary the wakefield "phase" between the 2 bunches
- Measured peak energy gain of 1 MeV over 6 mm
- $\rightarrow$  Unloaded wakefield  $\approx$ 316 MV/m (unloaded)
- Energy gain/loss in good agreement with theory
- PWFA as beam/plasma diagnostic
- More to come ...
- Reach n<sub>e</sub>=10<sup>19</sup> cm<sup>-3</sup> for multi-bunch PWFA experiment (N≈150)
- Multi-bunch (N=1, ..., 5) mask PWFA experimental program (ΔE/E<1, and important for > energy doubling!)



**MOST IMPORTANTLY** 



# Thank you to the ATF staff for making this possible!

