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The EFT algorithm

Identify key fields

�

and

�

;

Identify low-energy scales � � �
and high-energy scales

�� � � 	�

� ��� �;
Identify symmetries

� � � ��� �, rotation,

� � �

;

Write down all operators contributing to this process which are

allowed by these symmetries;

� �

,

� �

, . . .

Organize using naive dimensional analysis;

Determine power counting for loops in QFT;

Calculate observables to desired accuracy.

PREDICTIONS (Systematically improvable, falsifiable)
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The “strong QCD” problem

Many key quantities in QCD: � �� � �
�

� � .

� Essential singularity at 	 � 

.

PERTURBATION THEORY WITH AND
USELESS AT LOW ENERGIES

Alternatives:

Lattice QCD;

Find new degrees of freedom: constituent quarks; flux tubes;

instantons; nucleons and pions.

Goal: Low-energy effective theory of QCD with nucleon and pion

degrees of freedom;

Key: Effective theory must inherit low-energy symmetries of QCD.
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Low-energy symmetries of QCD

��� �� � ��� � 	
 � � �
� � 	
 � � ��� ��� � � ��� �
� � � �
� ���� �� �

��� � ��� � theory symmetric under � � �
.

Isospin: symmetry under

Spin: form ;

a few MeV

Symmetry under and ;

Prediction: Symmetry of QCD Hamiltonian for every positive par-

ity eigenstate of there should be an (almost) degenerate nega-

tive parity eigenstate.
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Experimental baryon spectrum
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Cohen & Glozman, Int. J. Mod. Phys. A17, 1237 (2002)
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Analogy: Ferromagnetism

Above �:

� �

� �

Below �:

� �

� �

rotationally symmetric, so how can
?
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Analogy (contd.)

Spontaneous symmetry breaking: below

��
� ground state of

Hamiltonian does not have symmetry of Hamiltonian itself.

Existence of zero-energy excitations, “Goldstone modes”.

Ferromagnetism QCD

Ground state QCD vacuum

Low temperature Low energy, also T

Magnons Pions
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Consequences for low-energy QCD

��� � �

(chiral limit):

��� � 


;

� is a pseudoscalar;

�’s interact weakly.

(but still ):
Only modification: , so .

New effective theory:
SMALL BIG

Symmetries: , isospin, Spontaneously broken S

Degrees of freedom:
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The strong-interaction mass gap
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Chiral perturbation theory

Chiral perturbation theory is the most general

� � � � � � consistent
with the symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

� ��� ���
��� � 	�


“Short-distance physics” ( ) expanded a la the multipole

expansion certain number of “multipoles” need to be

determined at each order;

Pions are weakly coupled and light they provide the

long-distance ( ) contribution to observables.

Resultant EFT is model-independent and
systematically improvable

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner,...

NPSS Lectures, Bar Harbor, ME, June 2004 – p.10/32



Chiral perturbation theory

Chiral perturbation theory is the most general

� � � � � � consistent
with the symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

� ��� ���
��� � 	�


“Short-distance physics” (
 � � �
��� ) expanded a la the multipole

expansion � certain number of “multipoles” need to be

determined at each order;

Pions are weakly coupled and light � they provide the

long-distance (
 � � �
��� ) contribution to observables.

Resultant EFT is model-independent and
systematically improvable

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner,...

NPSS Lectures, Bar Harbor, ME, June 2004 – p.10/32



Chiral perturbation theory

Chiral perturbation theory is the most general

� � � � � � consistent
with the symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

� ��� ���
��� � 	�


“Short-distance physics” (
 � � �
��� ) expanded a la the multipole

expansion � certain number of “multipoles” need to be

determined at each order;

Pions are weakly coupled and light � they provide the

long-distance (
 � � �
��� ) contribution to observables.

Resultant EFT is model-independent and
systematically improvable

Weinberg, Gasser, Leutwyler, Bernard, Kaiser, Meißner,...
NPSS Lectures, Bar Harbor, ME, June 2004 – p.10/32



Power counting in PT

Rules:

��

for a vertex with � powers of � or � � :
� � � �

;

� � � for each pion propagator:

�
� � � � �
� ;

� � � for each nucleon propagator:
�

�� � � �� � � � � ;

� �

for each loop:

� �
	

;

Power counting for loops as well as for

,
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Nucleon Compton Scattering in PT

� ��� �� �

� ��� �� � �

� � �
� 	 


� 	

Powell X-Sn +

non-analyticity

from loops

Small expansion:

.
Bernard, Kaiser, Meißner (1992)

PDG average:
;

.
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 �
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 �
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�


 � 

�

� � � � 
 � � � � �;



� � � �
�

� � 

�

� � � � 
 � � � � � .
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N

�

LO: �
� �

� amplitude at

��� � � �

J. McGovern, Phys. Rev. C 63, 064608 (2001)

Short-distance physics via contact terms , with coefficients which
should be fit to data:

Experiments: SAL/Illinois, LEGS, MAMI, . . . .
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Results
dΣ�dW lab
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�

�
� ��� � � � 
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� � � 	
�


 � �
�

� � � ��
�

�
� ��� � � � 
 � � � � �

S. R. Beane, J. McGovern, M. Malheiro, D. P., U. van Kolck, Phys. Lett. B, 567, 200 (2003).
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PT and light nuclei

�PT: pion couples derivatively and � � is “small”

� pion interactions are weak at low energy.

NO NUCLEI!!
Weinberg (1990): employ chiral expansion for potential and
solve Schrödinger equation for nuclear wave function:

i.e. expanded in powers of using PT.

respects QCD pattern of chiral symmetry breaking;

Systematic theory of interaction.
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Leading-order potential

� � � � � ���
� 	 ��


�
� � � �� �

� � � � � 

��� �
 � �� �

Yukawa(1935):

Range fm

Leading-order PT potential is singular, requires regularization and
renormalization.
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Leading-order potential
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� 	 ��


�
� � � �� �

� � � � � 

��� �
 � �� �

Yukawa(1935):

�� �� � � � �� � �
�� �
�

Range � �
� � �

� �

fm

��� �

�

� � � � ��� � � ��� � �� � ! ��
" # $ � %

&

Leading-order �PT potential is singular, requires regularization and
renormalization.
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Fun facts about the force

Nuclear force is attractive at long range, � � � fm;

Nuclear force is repulsive at shorter distances, ;

0 1 2 3 4
r (fm)

-20

0

20

40

60

V
 (

M
eV

)

V
total

V
OPEP

V
short

, so states of different mix;

as ; Beane & Savage and Epelbaum et al.

Corrections to LO potential due to two-pion exchange etc. can

be systematically calculated in PT.
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Deuteron wave functions

Deuteron: binding energy 2.225 MeV, (?small on scale of � � ?) fixes

�

.
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Same at long distances:

�

,

� �,

��� ,

��
� � �, � � .

Some differences at

two-pion range.
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Reactions on deuterium

� � � � �

: calculated from chiral potential.

: also has a PT expansion. (Weinberg, van Kolck)

Description of observables which should be: model independent, sys-

tematically improvable, accurate at low momentum/energy transfer.
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�

in PT

� ��� � � ��� � � � � ��� � � �

��	 � �
 � ��� �

D.P. + Cohen, Meißner + Walzl, D.P.

LO : structureless nucleons

NLO : nucleon isoscalar charge radius + relativistic

effects

NNLO : two-body pion-exchange-charge operator

N LO : two-meson-exchange charge pieces
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using factorization

� �� ��� ��

 � � � � � � � � � � �	 

�

� � � � � � � � � 


0.0 200.0 400.0 600.0 800.0 1000.0
q (MeV)

10
-3

10
-2

10
-1

10
0

GC

LO: O(e)

NLO: O(eP
2
)

NNLO: O(eP
3
)

Parameter-free prediction: tests �PT’s description of deuteron.

Data: Abbott et al., Eur. Phys. J. A 47, 421 (2000); Theory: D.P., Phys. Lett. B 567, 12 (2003).
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Conclusion

EFT relies on the insensitivity of low-energy observables to

details of short-distance physics.

Construct most general theory consistent with known

symmetries and scales of problem.

Model-independent, systematic.

QCD’s spontaneously broken symmetry .

Basis of chiral perturbation theory, applied with much success

in A=0 and A=1 ( ).

To deal with need new EFT: “ -expansion”.

Light nuclei can also be attacked using PT (Weinberg).

, , , , , , , , etc.
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Future work

Polarization observables in

�� �

(with D. Choudhury);

�

degrees of freedom in � �

(with R. Hildebrandt, et al.);

More data on �d � �d! HI �S at TUNL

Compton scattering on Helium-3;

� � � � � � � for � � scattering length (with A. Gårdestig);

�

-expansion for � �

scattering;

Systematic n-body forces which are consistent with

� �

force;

Shell model as an EFT;

MFT, DFT, and EFT.

Thanks to the U.S. Department of Energy for financial support.
NPSS Lectures, Bar Harbor, ME, June 2004 – p.24/32



�

in PT

�
� � � � ��

� � � � �� � � � ��

� �� � � ��

Leading-order

� � � 


:

	 
 
 �, structureless nucleons;

Next-to-leading order : , nucleon

structure;

also includes relativistic corrections (down by ).
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Wave-function dependence

0.0 200.0 400.0 600.0 800.0 1000.0
Q (MeV)
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Λ=600 MeV, NLO χPT
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NNLO Idaho
Nijm93
R=1.5 fm + OPEP
R=2.5 fm + OPEP

10
−3
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−2

10
−1

10
0

GC

Wave-function sensitivity gives an estimate of higher-order effects.
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Higher

�

? “Effective models”?

NPSS Lectures, Bar Harbor, ME, June 2004 – p.28/32


	The EFT algorithm
	The ``strong QCD'' problem
	Low-energy symmetries of QCD
	Experimental baryon spectrum
	Analogy: Ferromagnetism
	Analogy (contd.)
	Consequences for low-energy QCD
	The strong-interaction mass gap
	Chiral perturbation theory
	Power counting in $chi $PT
	Nucleon Compton Scattering in $chi $PT
	N$^2$LO: $O(e^2 P^2)$
	Results
	$chi $PT and light nuclei
	Leading-order potential
	Fun facts about the $NN$ force
	Deuteron wave functions
	Reactions on deuterium
	$J^0$ in $chi $PT
	$G_C$ using factorization
	$G_Q$
	Conclusion
	Future work
	$J^0$ in $chi $PT
	Wave-function dependence
	$G_M$
	Higher $Q^2$? ``Effective models''?

