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Nominal Laser Parameters
• Flashlamp-pumped Ti:Sapphire/Nd-Glass laser system

– 1 micron
– 400 fs
– 5 J 
– 10 TW
– 0.003 Hz
– contrast: 10-5 

• Flashlamp-pumped Ti:Sapphire laser system
– 0.8 micron
– 30 fs
– 3 J
– 100 TW laser (currently at 30 TW)
– 0.1--10 Hz
– contrast: 10-7



CPA Laser System Schematic
High Peak Power Laser

All Solid State 

Output 3 J, 30 fs, 0.1 Hz
100 TW Peak Power (planned)

Output 700 mJ, 30 fs, 10 Hz
23 TW Peak Power

H. Wang et al., J. Opt. Soc. 
Am. B 16, 1790 (1999).



Relativistic self-channeling leads to 
collimation of the laser beam, which 
leads to collimation of the electrons.

Low-Angular Divergence of Laser-
Wakefield Electron Beam

Plaser =10 TW

∆T = 500 keV

ρ = 1010-1011e-

τlaser= 30 fs
∆Θ ~ 0.25o

LANEX

τlaser= 400 fs
∆Θ = 1°



Novel Effects Relevant to Laser-Wakefield Generation

• Stimulated forward Raman scattering found to be seeded by ionization blue-shifted light
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Raman spectra shows 100-um sensitivity to the 
focal position relative to the gas target edge. 

1053 nm

Spectrally and spatially resolved light in the top-
view direction shows that the laser spectrum 
blue shifts as it propagates.

2.0 TW

2.4 TW

• Raman spectrum found to be cross-phase modulated

Experiment Simulation



Cross-Correlation Optical Measurement of 
Electron-Beam Pulse Duration

~ 1pseτ

Direct temporal measurement of a sub-picosecond-laser-accelerated electron 
beam, by use of ponderomotive deflection by an ultraintense laser pulse

1 2

1-beam, undeflected

2-beam, zero delay

~ 3 degrees

Ponderomotive deflection 
of electron beam observed 
on fluorescent screen

1 2
supersonic 
nozzle

1st laser pulse – accelerates e-beam
2nd laser pulse – deflects e-beam

Measurement agrees with calculations 
that include longitudinal laser fields

fluorescent 
screen

Channeling of the two laser 
pulses – the interaction region 
lies outside the plasma



XUV Generation from Counter-propagating 
Thomson Scattering
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N = 2 X 107 (>600 eV)
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Laser-driven
e- beam

Laser
a0=5.6 

5º k spread

µm

X-ray beam

Co-linear Laser Synchrotron X-Rays

K. Ta Phouc, et al. Physical Review Letters, 91, 195001-1 (2003).



Betatron oscillations in a plasma channel 
produce a well-collimated x-ray beam

1010 photons/shot in a collimated beam
Estimated pulse duration ~ 30 fs
Source size = 20 µm X 20 µm
Brightness = 2 X 1022 photons/[mm2·mrad2·s ·0.1%BW]

hν > 1 keV

A. Rousse et al. (in review, Phys. Rev. Lett.).



Laser-Driven Proton Beams Show 
Excellent Transverse Emittance

Laser
Target Mesh

Film

Proton Beam

1 mm

Proton 
Beam

Target Normal 
Forward Direction

Laser 
Forward 
Direction

CR-39 
Detector

Laser Parameters:
λ=1.053 µm
P < 12 TW 
U = 5 J
τ = 400 fs
I =<2x1019 W/cm2



Laser-driven proton acceleration: improved 
understanding of mechanisms and control

Conductivity

Smoother beams with increasing 
conductivity reveals the role of beam 
instabilities in dielectric materials. 

Proton beam spatial profiles (CR-39)

Protons found to originate from both 
front and rear sides of thin-film 
targets.

Kirk Flippo’s PhD Dissertation, University of Michigan (2004).

Proton energy vs. target thickness

Mylar Copper



An Optical Trap for Relativistic 
Plasma

a0=1

a0 = 0.5

0/ ~ / ~ 10SP P n nδ

Thomson scattering (top view)

P. Zhang, N. Saleh, S. Chen, Z.M. Sheng and D. Umstadter, Physics of  Plasmas
10, 2093 (2003).



Transverse injection pulse decreases 
e-beam divergence, and transfers energy

Wide electron beam 
profile w/o injection, 
near self-trapping 
threshold

Electron beam 
profile narrows 
with injection

Zhang et al., Phys. Rev. Lett. 91, 225001 (2003).  



Summary
• MeV laser-wakefield electron accelerator

• Guiding and angular-divergence reduction

• Sub-picosecond electron-beam pulse-duration

• Stochastic heating and injection of electrons

• Ionization seeding of plasma waves

• Relativistic self-modulation

• All-optically-driven femtosecond x-ray sources

• MeV-energy laser-driven proton accelerator

• Proton origin and beam-uniformity control 

• Optical trap for relativistic plasma
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