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Linear collider-purpose and requirements

The high-energy electron-positron linear collider (LC) is
a precision tool for the exploration of elementary particle
physics at the energy frontier.

* To reach the energy frontier, ahigh beam energy E, Is
required.

e Current generation LC designs are in the cm energy
range E=2E, ~ 0.5-3 TeV, and use “conventional”

accel eration schemes (disc-loaded traveling wave linacs)
* Next-generation machines must aim for the 10 TeV
scale, and may reguire advanced accel eration techniques.
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Linear collider requirements

Affordability and constructability

e Current generation LC'sinthe 1 TeV range cost of
order $6B, with half the cost in the linacs, which have a
30 km length with a gradient of .050 GV/m.

e A factor of 10 increase in energy with no improvement
in gradient => $30B, 300 km long. Thisis neither
affordable nor constructible.

* \We reguire an increase in linac gradient by factor of
order 10-20 => to 0.5-1 GV/m or higher, with same or
lower cost for the acceleration system.
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Linear collider-luminosity requirements

 The cross-section for electron-positron collisions falls as 1/E2.
In order to provide sufficient data rates for the expected physics
processes, we require that the luminosity scale with energy as

L ~E[TeV]? x 10°* cm 25!

Beam power\ Transverse density
, P, ( N
— Bunch
Ly \4Amoyo ; population
Rms horizontal beam size Rms vertical beam size
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Linear collider-luminosity requirements

Affordability and operability

 \With no change in transverse density, afactor of 100 in luminosity
would require 100 times more beam power. Current generation LC's
have AC power requirementsin the few hundred MW range, and are
already relatively efficient. We cannot go to tens of GW’s, asthe
machine will be too expensive to operate.
e The only route to enhance luminosity is an increase in the
transverse density. How far we can go in this direction is limited by
-the performance of the injectors, which determine the initial

emittance of the beam,

-emittance growth in the main linacs

- the final focus optics and the beam-beam interaction at the

collision point.
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When dense beams collide
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Beam-beam interaction- the strong electromagnetic

fields of the opposing bunch produce:
1. Pinch (“disruption”): aluminosity
enhancement factor Hy

2. Radiation (*beamstrahlung”): a source of

background and energy spread
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Beamstrahlung

Beamstrahlung iIs characterized by the beamstrahlung

2
parameter: ( Ey/me
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Next-generation LC designs, with higher energiesand  |ength

densities, will operate in the quantum beamstrahlung
regime, for which Y > 1. Intermsof this parameter,
the average number of photons radiated per e ectron is
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Beamstrahlung

* n, must be limited to keep backgrounds under control and
constrain the cm energy spread. Typically we requiren-, < 1.

* We can keep n, limited while maximizing the luminosity
by operating with flat beams, for which o] < o .
In this case, the luminosity per unit beam power can be

written
3

r \/5 ’}’ﬂ-i},
I N 16a2/3r.m Em/t’?zﬁ;

We seethat it is advantageous in this high energy regime to
operate with very short bunches.

AAC Workshop




Prescription for achieving high luminosity

 Maximizethe beam power -

— Limited by the wall plug power and wall plug -> beam
power efficiency

 Minimizethevertical beam size and bunch length at the
|P

— Limited by the beam emittance and bunch length provided
by the injector, emittance dilution in the linac, and the
final focus optics.

o Stabilizethevertical beam position at the | P

— Limited by component physical motion (natural ground

motion, man-made sources) and EM field fluctuations
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Linear collider design parameters

* In the following dlide, the key top level parameters for
current-generation LC designs are given.

e In addition, the parameters of a specific example design for a
next-generation 10 TeV collider, which might utilize advanced
acceleration concepts, are included. This example will be used
In the rest of the talk to provide the basis for requirements for
the advanced accelerator systems.

 The disadvantage of choosing a specific example design is
some |oss of generality in specifying the requirements. The
origin of the requirements will be stated as generally as
possible in the subsequent discussion, so that extensions to
other examples can easily be made.
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Linear collider design parameters

Table 2: Linear Collider Top-level parameters

Parameter GLC/NLC | CLIC 3000 | Example at
1 TeV 3 TeV 10 TeV
E}, (Beam energy) [TeV] 0.5 1.5 5.0
N (Electrons/bunch)[ x 10”] 7.5 4 2
f (Bunch repetition rate) [kHz] 23 154 18
P, (Average beam power/beam) [MW] 13.8 14.8 28.8
7, , Mm] 218 61 7.8
7, o [(Nm] 2.1 0.49 0.13
o, [pm] 110 35 4
n- 1.18 1.36 1.25
op [%] 8.3 29.8 374
L[x10° em=2s71] 3.1 11.3 106.5
Parameter tradeoff with N:  f o Pb/N J; X N/ﬂ»y
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GLC/NLC linear collider
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Figure 1.1: Schematic of the JLO/NLC

GLC/NLC: 11.4 GHz, 50 MV/m accelerating structures,

modulator/klystron power source, E=1 TeV, efficiency~9%,

overal length~ 30 km, wall plug power ~ 300 MW
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Compact Linear Collider (CLIC)
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CLIC: 30 GHz, 150 MV/m accelerating structures, two-beam
power source, E=3 TeV, efficiency ~9%, overal length ~ 33
km, wall plug power ~ 320 MW
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Example 10 TeV LC design with high-gradient
acceleration system
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10 TeV example: 2 GV/m accelerating structures, E=10 TeV,
efficiency ~16%, overall length ~ 16 km, wall plug power ~
360 MW
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|njector requirements

Table 3: Injector requirements

Paramelter GLC/NLC | CLIC 3000 | Example at
1 TeV 3TeV 10 TeV
Beam Energy [GeV] 7.98 8.92 78.92
Electrons/bunch [ x 10”] 1.5 4 2
Bunches/pulse 192 154 150
Pulse repetition rate [Hz] 120 100 120
Beam pulse width [ns] 270 102 30
Bunch separation [ns] 1.4 0.66 (0.2
Peak beam current [A] 0.854 ().967 1.60
Y€, [nm-rad] 3100 600 325
V€, [nm-rad] 26 4 3
~vmcd o, [eV-m] 9900 4090 4876
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Injector design

Current-generation injector designs use

e Particle sourcesto produce large emittance
(polarized) electrons and positrons

« Damping rings to reduce the beam emittance and
flatten the beam

e Bunch compressors to shorten the bunch

Direct production of electron beams satisfying the

Injector requirements iswell beyond the current state of

the art. Positron beams of this quality would be even
more difficult to produce.

For this reason, our next-generation example injector
design is similar to that of the current generation.

AAC Waorkshop
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Electron and positron sources

» Electron sources
— DC polarized photocathode guns
— Polarization >80%, normalized transverse rms emittance ~50-100
um-rad, round beams
* Positron sources

— Conventional (GLC/NLC, CLIC): Bombard athick high-Z target
with afew GeV electron beam, collect positrons from shower

— Normalized transverse edge emittances ~30,000 um-rad, round
beams
o For this10 TeV collider example, conventional electron
and positron sources should be adeguate, although
development of polarized-beam cathodes with higher peak
current capabilities may be required.

AAC Waorkshop
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Damping rings-generating low emittance beams

e Thevery small emittance beams required for high
luminosity result from synchrotron radiation damping in
gpecially designed damping rings. Some key issues are

— Magnetic lattice design for low emittance and rapid damping:
extensive use of wiggler magnets. The dynamic apertureislimited
primarily by sextupole and wiggler nonlinearities.

— Emittance growth control: intrabeam scattering (IBS), space charge
effects, and beam gas scattering must be limited. CLIC damping
ring emittances are limited by I1BS.

— Instabilities: interaction of the stored beams with ions generated by
lonization of the residual gas (fast ion instability), or (for positrons)
with photoel ectrons generated by the synchrotron radiation
(electron cloud).

— Beam jitter: Ground motion and vibration of ring magnets must be
controlled; extraction devices must be very stable.
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CLIC positron damping ring

layout of the CLIC positron damping ring

90 [m]

dispersion
sUppressor

arc with bending magnets (48 TME cells) Ri= 27 [m]

wigglers FODO section

1]
b3
[ =

76 wigglers in the ring
24 Gev length of each wiggler 15 2m
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Demonstrated and required damping ring

emittances and coupling

10 TeV example
parameters scaled
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Bunch compressors

5 mm, 0.1%
Spin
Rotator 5X
140 MeV L-Band —" "/~ & GeV S5-Band Pre-Linac
BC-1 Wigglers
100 m 180 Arc
90 um, 1.5% 5.5X
-— X-Band Main Linac - /" | 800MeV X-Band
Se02ABS BC-2 Chicane
Figure 3.4.4.1: Schematic of two-stage bunch compressor layout.

GLC/NLC Two-stage bunch compressor
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10 TeV example bunch compressor

10 Tev example requires 3-stage bunch compressor.
« Coherent synchrotron radiation will probably be an issue in
the final stage
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Main linac structures: GLC/NLC

GLC/NLC Power source
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Figure 3.4.5.2: Schematic of an X-band linec RF unit.

GLC/NLC structure  Peak power delivered to beam/structure: 27 MW
Length: 0.6 m Energy to beam/structure: 7.2 J

G=0.05 GV/m AAC Workshop 23



Main linac structures; CLIC
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Main linac structures: 10 TeV example

/ External fOCLng system
i B R

: 0.2m Peak power delivered to
Accelerat! ng beam/structure: 640 MW
structure

Energy to beam/structure: 19 J
length=0.2 m Power source
G=2 GV/m
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Affordability requirements

Goal: The hardware cost of the advanced accel eration
systems for the 10 TeV machine should be roughly the
same as the hardware cost of the linacs for the current-
generation 1 TeV machine: i.e, X10 reduction in cost/TeV.

Current-generation design cost estimate (in mass
production) is about $650K for 4.8 m of structure (0.24
GeV) plus power source  =>$2700K per GeV.

So the example advanced accel eration system (including
power source) should cost $270K per GeV (in mass
production). For this example of a0.2 m unit with 400
MeV of energy gain, the cost should be about $100K .
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RF frequency and longitudinal wakefield
requirements

On-crest relative energy spread 2
< 8, requires RF wavelength : A2 To, e
Longitudinal wakefield compensation at ¢ degrees off-crest:

) < (G cos ¢ OR _I_S?Tffztand}
© ™ 2megNre \ 1.25 A

W (1.50

For 6,= 0.5% FWHM energy spread and ¢=10 degrees:

Parameter GLC/NLC | CLIC 3000 10 TeV
Maximum RF frequency [GHz] 413.3 136.3 1192.8
Design RF frequency [GHz] 11.3 30 500
W (1.50.) [V/pC/m] 9.21 x 10% | 4.57 x 10% | 1.85 x 10°
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Acceleration of low emittance beams

«To achieve high luminosity, very small vertical emittance beams
must be accelerated in very long linacs with small emittance
growth (~1-10 nm-rad) and small beam jitter (~0.1c).

Table 5: Beam si1zes and emittance growth budgets in main linacs

Parameter GLC/NLC | CLIC 3000 @ 10 TeV
rms horizontal beam size at injection [pm] 36.6 11.26 3.77
rms vertical beam size at injection [jm] 3.0 0.8 0.27
Injection energy [GeV] 8 9 79
Injected vertical emittance [nm-rad] 20 2.8 2.4
Budgeted emittance growth [nm-rad] 10 4.9 1.75

eSources of emittance growth:
» Wakefield induced emittance growth
* Digpersive emittance growth
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Control of wakefield-induced single-bunch emittance growth

* The development of head-tail growth (BBU) due to coherent
oscillations at injection is controlled through the use of “BNS
damping”. This suppresses the resonant driving of the tall viaa
tune difference between the head and tail of the bunch,
established by phasing the bunch off-crest in the rf wave,
resulting in adifference in energy between the head and the
tail.

o Tolerable energy differences are on the order of 1%. For a 1%

energy difference, we need the transverse wakefield to satisfy
o 0.0387v; «<— Injection gamma
W | (20’2) <

Focusing cell length
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Control of single-bunch emittance growth

Structure misalignments will also cause emittance growth. The
requirement on the rms structure misalignmentsis

WY < 0.0777A(ve, )G L3,

?)’ﬂ,["‘["‘ ~ *
- 2 2 , Loty
OBNSYi (\/ e 1) S

Emittance growth can also result from dispersive effects caused
by off-axis passage through the quadrupoles. The BPM’s are
used to measure and align the beam to the quadrupoles, and the
tolerance on the BPM-quad rms alignment is

0.1887A (e, )G L?

cell

2 2 (o
OBNSTi (»ﬁ 1)
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Control of multi-bunch emittance growth due to
long-range wakefields

* Requirement on long-range wakefield at the location of
the following bunch:

G
47TE[‘]N?”{31 / %

e |n disc-loaded waveguides, emittance growth due to long
range wakes is controlled by RF structure design methods
which suppress the effects of dipole modes. This is done by
a combination of detuning of the cell dipole modes along
the length of a multi-cell cavity, together with damping
manifolds which couple out the dipole modes.

W (Ab) <
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Control of wakefield and dispersive emittance growth

Table 6: Transverse Wakefield and alignment requirements

Parameter GLC/NLC | CLIC 3000 10 TeV
Phase advance/cell [7] B0 80 80
Cell length (injection) [m] 8 4.5 2
Average (4, (injection) [m] 7 39 1.75
Number of FODO cells 263 314 274
Allowed W (20.) for 1%
BNS energy spread [V/pC/m?] 1.58 x 107 | 1.05 x 10° | 9.36 x 10°
Allowed rms structure misalignments [jim] 14 5.3 0.5
Allowed rms BPM misalignments [j1m] 2.0 0.74 0.13
Ap[ns] 1.4 0.67 0.2
Allowed W, (Ay) [V/pC/m~] 789 4.65 » 10° | 4.48 = 10°
W 20 226 20.9

 High injection energy and strong focusing allows for high tolerance for

transverse wakes

e Structure and BPM misalignment tolerances are very tight, will require

beam-based alignment with very good diagnostics
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Jitter of focusing system components

« High frequency component motion which cannot be
compensated by train-to-train feedback (frequency of order

1/10 cycle rate and higher) can cause the beams to miss at the
collision point. Toleranceis at the 0.1c level.
e Natural ground motion at these frequencies is ~1-10 nm, or
less, at very quiet sites.

Tolerance on uncorrelated quad
jitter for 0.1 o beam jitter at end

of thelinac

(y2) S 1072 x

GA(vey)

L2

cell

6.7128 (v — i) i

Table 11: Linac quadrupole vibration requirements
Parameter | GLC/NLC | CLIC 3000 | 10 TeV
(yz) [nm] 5.1 1.3 0.28

AAC Waorkshop
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|LC-TRC integrated ground motion models

Integrated rms motion, nm
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Residual gas

Multiple Coulomb scattering in residual gasin the linac will
cause emittance growth. The limit on gasdensity is

G
3207 A (ve, )12 Z(Z + 1) Leet (\/; _ ) |

Assuming Z=1, the requirements for growth at 10% of the emittance budget

n <

ae Table 9: Vacuum requirements
Parameter GLC/NLC | CLIC 3000 10 TeV
Density [ecm™] | 1.33 x 101 | 1.9 x 10! | 3.52 x 10%*
Pressure [Torr] 2 x 10~° 3% 10~° | 55 x 10-°

Strong transverse focusing fields within the accelerating structure, asin
aplasma, could reduce L, thusraising this limit, aswell asthose on
the wakefields. However, the jitter requirements will be more severe.
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Summary of requirements for accelerating
system for 10 TeV LC example

Beam size at
Injection:
3.8 um (H) by

0.2m

0.3 um (V) 1

Sructure
misalignments:
0.8 umrms
BPM
misalignments:
0.13 umrms
Focusing
system jitter:
0.28 nm rms

L

2 GeV/m
<1200 GHz

Power source

Gas density <
3.5x102 cm'3
hydrogen-equiv.

AAC Waorkshop

$100K

< >

15% wall plug->beam
efficiency

Delivered to beam:

640 MW peak power;

Accelerating structure 19 J

RF phase stability: 0.1°
RF amp. stability 0.1%

Transverse wake field

< 9x10°V/pC/m?
Longitudinal wake field
< 2x10°V/pC/m
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Beam delivery and final focus system

) P, f \/ETE"}*F;H:‘;
5

Table 15: Linear Collider Interaction point parameters
Parameter GLC/NLC | CLIC 3000 | Next-generation
1 TeV 3TeV 10 'TeV
Beam Energy [TeV] 0.5 1.5 5.0
ve, [nm-rad] 3600 680 600
’}'E; [nm-rad] 40 10
3 [mm] 13 16 1
3, [pm] 110 70 25
. [pm] 110 35 4
g Inm] 218 b1 7.8
T [mn] 2.1 0.49 0.13
Hp 1.41 1.71 1.93
L[x10" em™= s '] 3.1 11.3 106.5
T 0.275 4.98 562
P2y 1.18 1.36 1.25
op [%] 8.3 29.8 37.4

AAC Workshop
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|ssues in beam delivery/final focus system

o Stabilization of final focus quadrupoles at the level
of 0.01 nm (0.1 o) needed...State of the art inertial
stabilization now is afew tenths of a nm.

 High gradient final focus magnet design (e.g, 400
T/m). 10 TeV design is at the Oide limit.

« Chromatic correction=>energy bandwidth of the
final focus required at the 0.5% FWHM level.

e Coherent e"-e pairs. 0.36/electron

 Collimation and beam halo-collimator wakefields
 Reliability, availability, and machine protection

* Diagnosis and transport of beamstrahlung and spent
beam to dump
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Conclusions

e Next-generation (10 TeV scale) energy-frontier linear colliders
will require inexpensive high gradient acceleration systemsto be
affordable.

 The high beam power required for high luminosity will require
relatively efficient conversion of wall plug to beam power.

e Short bunches are favored to keep beamstrahlung under control.

e |njector systems can be similar to existing designs, although there
will be more challenges in the damping rings and bunch
COMPressors.

e Emittance preservation requirements in the linacs will put tight
tolerances on structure and focusing system alignments and jitter, as
well as limits on structure wakefields and residual gas.

» There will be additional challenges in the beam delivery and final

focus systems.
AAC Waorkshop 39
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