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Introduction

Afterburner: double the collider energy using a PWFA

Goal: develop a design consistent with nLC (next LC)

• Layout
– Collider footprint, afterburner, and interaction region

• Parameters
– Multi-bunch operation, luminosity, and energy spectrum

• Beam generation
– Bunch charge and separation
– Options for the drive beam

• Backgrounds
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Original Concept
Energy Doubler for the SLC

Afterburners30 m

S. Lee et al., Phys. Rev. STAB, 2001
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Simulations of Beam Loading
SLC Afterburner (from Tom Katsouleas)
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The next Linear Collider (nLC)

• Requirements
– Initial operation at 500 GeV cms with L ~ 2x1034 cm-2s-1

– Provide an integrated luminosity of 500 fb-1 in 1st four years
– Cover energy range from 90 GeV ! maximum energy
– Upgrade to ~1 TeV with L > 2x1034

– Measure with energy resolution of 0.1%
– Operate with >80% electron polarization

• Timescale
– 10 year construction

• Cost
– Billions of $
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NLC and TESLA Parameters

NLC TESLA NLC TESLA
CMS Energy (GeV) 500 500 1000 800
Luminosity (1033) 20 34 30 54
Repetition Rate (Hz) 120 5 120 4
Bunch Charge (1010) 0.75 2 0.75 1.4
Bunches/RF Pulse 192 2820 192 4886
Bunch Separation (ns) 1.4 337 1.4 176
Eff. Gradient (MV/m) 52 23.4 52 35
Injected γεx / γεy (10-8) 300 / 2 1000 / 2 300 / 2 800 / 1

γεx at IP (10-8 m-rad) 360 1000 360 800

γεy at IP (10-8 m-rad) 4 3 4 1.5

βx / βy at IP (mm) 8 / 0.10 15 / 0.4 10 / 0.12 10 / 0.12

σx / σy at IP (nm) 245 / 3 553 / 5 219 / 2.1 391 / 2.8

σz at IP (um) 110 300 110 300
Υave 0.13 0.05 0.28 0.09
Pinch Enhancement 1.49 2.1 1.43 1.9
Beamstrahlung δB (%) 4.6 3.2 7.5 4.3
Photons per e+/e- 1.3 1.6 1.3 1.5
Linac Length (km) 7.1 15 14.1 15

NLC and TESLA Parameters
Stage 1 Stage 2
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Beam Delivery System Layout

• BDS is roughly 3.5 km in both NLC and TESLA 
designs
– In NLC design, one IR is located ‘straight-ahead’ to allow for 

higher energy reach but both will transport ~600 GeV beams
– BDS consists of linac emittance diagnonstic, linac dump, 

beam switchyard, and Final Focus System with integrated 
beam collimation system

– Plenty of room in FFS for an afterburner and plasma lens
– IP1 and IP2 have a 20 and 30 mrad crossing angle which 

will be necessary to extract highly disrupted beam

e+e- 970m BDS
(will be 1100m)

1400m BDS

1400m BDS 1400m BDSIP1

IP2
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Interaction Region

• IR needs lots of masking
to protect against beam-
beam debris

• Luminosity bandwidth of
FFS is +/- 1%

Simulation of beam-beam interaction
debris in 500 GeV NLC IR (e- from left)
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Parameters

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

-30

-20

-10

0

10

20

z(cm)

E z
 (

G
V

/m
)

Driving bunch  N=3×1010 σz=0.063mm

Trailing bunch N- =1 × 1010 σz(trailing) = σz/2

38 GV/m

Loaded Wakefield

τ

8 GV/m

• For reasonable luminosity (and AC power efficiency) must 
consider multi-bunch operation
– Assume each bunch consists 

of two micro-bunches 
separated by ~ 1ps with a 
total charge equal to the 
nominal NC / SC bunch 
charge

– Use basic SLC afterburner 
concept with scaling for 
gradients and plasma density
where G ~ N / σz

2
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Parameters

• Two options for bunch generation:
– (terminology: drive bunch creates plasma wave; production bunch 

generates luminosity)

1. Could generate bunch at low energy (post-damping ring) and then 
accelerate each bunch in the train on a single rf pulse – looks like 
nominal operation for the rf accelerator

2. Could generate the bunch at high energy using a low energy drive
bunch and multiple stages for the plasma accelerator
• Use 500 GeV production bunch and add a 5 GeV drive bunch 

just ahead merging in longitudinal phase space
• Use short plasma stages of ~ 1m – Ugh
• Operate collider at low repetition rate for AC power 

considerations
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Afterburner Parameters
Case 1

NLC AfterBurn US SC AfterBurn
CMS Energy (GeV) 1000 2000 1000 2000
Linac Length (km) 14.1 0.13 30 0.21
Repetition Rate (Hz) 120 120 5 5
Bunch Charge (1010) 1.5 1.1 / 0.4 2 1.5 / 0.5
Bunches/RF Pulse 96  2820  
Bunch Separation 2.8 ns 0.6 ps 337 ns 1 ps
Eff. Gradient (MV/m) 52 4000 35 2400
Plasma Density (1/m3)  2.00E+22  9.00E+21
γεx at IP (10-8 m-rad) 360 360 960 960

γεy at IP (10-8 m-rad) 4 4 4 4
Pl Lens Reduction 10  11

σx / σy at IP (nm) 219 / 2.1 37 / 3.9 489 / 4.0 67 / 4.3

σz at IP (um) 110 32 300 35
Υave 0.27 5 0.11 3.5
Pinch Enhancement 1.4 1.1 1.7 1
Beamstrahlung δB (%) 8.4 40 5.9 32
Photons per e+/e- 1.2 2 1.6 1.7
Luminosity (1033) 31 10 38 10

NLC and TESLA Parameters
2 TeV 2 TeV • NLC is designed to 

operate with either 1.4 
ns or 2.8 bunch spacing 
– use latter

• SC design based on US 
Cold design not TESLA

• NLC case looks like low 
charge SLC

• Case 2 would have 
higher single bunch 
charge & lower frep

http://www.slac.stanford.edu/xorg/accelops/
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Luminosity Spectrum
(From Beam-beam)

2 TeV 
Afterburner

1 TeV 500 GeV 

• Spectrum near the cms energy is ~20%
– 2~3x worse than 

500 GeV designs

• Tails will be difficult
to extract from IP
– Probably eliminates

a head-on collision
option

– Crossing angle
requires crab cavity

– Likely eliminates
downstream
diagnostics such
as polarization
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Beam Generation
Micro-bunches

• Use LC damping ring complex to generate production 
beams
– Lower bunch charge should make rings easier to operate

• Use a separate injector before or after the rf linac for 
the drive beams and then merge in longitudinal space
– Probably use an rf gun for drive beams
– Emittance is not so important for drive beam

• Use present compressors to compress to ~30 µm
– Requires a major upgrade to SC compressor (2-stage system)
– CSR starts to become an issue 

• Scales as Nb/σz
3/2 and is few % now – needs study
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Beam Generation
High or Low Energy Drive Bunches

• Two options: co-accelerate drive and production or 
use low energy drive and multiple stages

• Case 1:
– Lots of advantages: co-acceleration which uses rf linac to 

best advantage; single PWFA stage; reasonable IP 
parameters

– Disadvantage: hard to separate drive beam from production 
beam close to IP ! messy interaction that is hard to predict

• Case 2:
– Generate drive beam in CLIC-like scheme but more difficult!
– Have to stage PWFA in ~1 meter stages but it would be easy 

to separate the drive bunch
– To minimize AC power, need to operate at 1/3 repetition rate
– More difficult collision parameters
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PWFA Beam Spectrum

• Beam spectrum is pretty good but larger then nLC
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PWFA Beam Matching

• Electron PWFA operates in blowout regime where 
electrons are expelled to large amplitudes
– Effective beta function ~ sqrt( γ / 2πn0re )
– For n0 = 2x1022 m-3, beta ~ 5 cm at 500 GeV

• For comparison, NLC IP beta functions: 1 cm x 0.01 cm

– Could focus beams down to match into this but it would be 
nicer to have an adiabatic plasma transition

• Need to understand impact on the beam and real 
possibility of varying plasma density

• What about positrons?   I just assumed similar 
performance would be attained

• Other plasma acceleration issues like head erosion 
and kink instability are also somebody else’s problem



AAC’04 Page 17 of 25 Tor Raubenheimer

Plasma Lens Focusing

• Because of the large spectrum ~10% rms, a 
conventional FFS will not work
– Use a plasma lens however chromatic effects limit the 

focusing that is attainable
– Need to worry about synchrotron radiation in strong focusing 

lens

nlens=2x1018 cm-3
no=2x1016 cm-3

K
K

n
n

lens

o
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∆
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ip β*=700 µm
at 2 TeV cms
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L=4 cm



AAC’04 Page 18 of 25 Tor Raubenheimer

Beam Collimation

• Typical nLC beam sizes are 10x1 µm in the linac and 
100 µm in the FFS 
– Particle tails extend out to chamber aperture
– In present FFS design, apertures are >100 σ but synchrotron 

radiation from final doublet requires tighter collimation at 10 
σy and 40 σy

– Plasma channel will provide focusing for 
10’s of σ but what about larger 
amplitudes?  What about captured plasma e-?

– Cannot let high energy particles shower near the detector
– Probably want to use existing collimation to remove linac 

tails – what about tails from the plasma?
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Beam Tails
Scattering from Plasma

• Two main processes:
– Elastic scattering and bremsstrahlung

Rf linacs
Elastic = 2e-8   
Brem. = 2e-9              

PWFA
Elastic = 2e-7
Brem. = 4e-5

Plasma Lens
Elastic = 7e-8
Brem. = 2e-5 
Hadronic = 2e-9

For N2 or CO

For H – Li is ~10 times worse

For H – Li is ~10 times worse
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Beam Tails Cont.

• Typical PWFA beam sizes and angular divergences are 
~0.5 µm and ~20 µr
! most bremsstrahlung photons will pass through IP 
but there are too many to rely on this

• What happens to large amplitude particles with 
amplitudes of ~50 µm?  If not focused, these need to 
be removed as well.

• Would like to mask and collimate after acceleration 
– Strong focusing of PWFA should allow small apertures but …
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Final Focus System

• Present final focus systems have integrated 
collimation system and then >500 meters for CCS and 
FT
– Plenty of space for afterburner with >1 GeV/m gradient

• Can we design a plasma-free insert which is matched 
from the PWFA and into the plasma lens?
– Need to mask/collimate incoming beam
– Needs to crab beam for crossing angle
– Provide diagnostics and feedback on beam position
– Measure beam energy and energy spread before IP

(Hopefully polarization measurements could be before PWFA)
– Remove drive beam before IP??  Drive beam will generate 

large ‘background’ of unwanted events and possibly disrupt 
the production beam
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Interaction Region Questions

• To extract the beam cleanly use a crossing angle
– Add a crab cavity in FFS matching insert – parameters are 

similar to NLC crab cavity

• IR solenoid is multi-Tesla
– Does the plasma lens work?

• With crab crossing are the multi-bunch kink 
instabilities or does the plasma suppress them

• Using the PFI (Plasma-Free Insert), can we 
implement standard IP beam-beam deflection 
feedback?

• What is needed to protect the vertex detector from 
the plasma?
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Linac RF

BDS & IR

Damping
Rings

e+ / e- Sources

Bunch Compression

SLC, E-158

SLC and

SLC, FFTB, ASSET, E-158 

ATF, 3rd Gen Light Sources, SLC

ε Preservation

NLCTA

SLC and FEL’s

Test Facilities Have Studied All Elements
Need to do the same for the Afterburner
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Where, When, and Why

• Three reasons to consider an afterburner
1. Used to upgrade Stage II (1 TeV) of nLC to multi-TeV for 

little capital cost increase and little increase in ac power.  
The physics motivation for this would come from LHC.

2. After operating Stage I (500 GeV) there is a desire for 1 
TeV but no resources (nominal stage II upgrade is a few 
B$).  The afterburner should be much cheaper but riskier.

3. Reduce Stage I (500 GeV) cost by eliminating the extra 
tunnel for the upgrade to 1 TeV – this is a small expense 
but … Now the afterburner is the 1 TeV upgrade path.

• The main competition for an afterburner concept will 
be from CLIC or equivalent
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Summary

• A Plasma Afterburner looks ‘possible’ for nLC
– Parameters are not crazy (just disturbed)
– Many advantages:

• Low cost; relatively quick construction; low AC power; 
high risk

• Need lots of plasma physics studies but that’s SEP

• Need to work on IR and matching region (if used)
– Good to integrate scattering processes into PIC codes or find 

another way to do real background calculations
– What about crab cavity?  Is head-on really not viable?  
– What about multi-bunch kink instabilities?
– What about protecting VX detector from plasma lens?
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