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Motivation

Laser-driven electron linear accelerators (laser linacs) offer potential for more
compact, less costly accelerators with very high acceleration gradients
A useful laser linac must have the following characteristics

- Efficient trapping of electrons into ponderomotive potential well (“bucket”)
of accelerating wave

- Preserving narrow energy spread of trapped electrons during acceleration

- These are critical for efficient staging of the acceleration process, which is
is needed to achieve high net energy gain

Most laser acceleration research has not focused on this issue

Staged Electron Laser Acceleration (STELLA) experiment is first to
demonstrate these important characteristics



Experimental Approach
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e Basic approach is to first create microbunches
- Modulate e-beam energy using laser light —

- Allow modulated electrons to drift or pass
through chicane to create microbunches
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- Trap and accelerate microbunches in
second laser accelerator

—_

e Can apply basic approach to different laser
acceleration methods
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- For convenience, chose to use inverse free
electron laser (IFEL) as method

- First IFEL modulates e-beam; second IFEL
traps and accelerates microbunches
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e Precursor STELLA experiment demonstrated
microbunch formation and staging using IFELs
[see W. D. Kimura, et al., Phys. Rev. Lett. 86, i
4041-4043 (2001)] P [T——
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Inverse Free Electron Laser (IFEL)

Use periodic magnet array
(wiggler/undulator) to cause electron
trajectory to oscillate while traveling
through array

Net energy exchange between
electrons and laser beam possible
if resonance condition is satisfied

2
7/2 — i('] +£j
24\ 2

where 4, = laser wavelength
Aw = wiggler wavelength
v = Lorentz factor
K = eB,A,/2tmc
B, = peak magnetic field

Higher energy exchange possible
using tapered wiggler/undulator
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Description of STELLA Experiment

Experiment located on Beamline #1 of ATF
- Use 45.6-MeV e-beam, which is resonant energy for IFEL undulators
- Use single 180-ps long ATF CO, laser beam to drive both IFELs

First IFEL (IFEL1) is buncher
- Designed to cause ~+0.5% energy modulation
- Has large gap between magnet arrays to permit passage of wide laser beam

Send modulated e-beam through hybrid permanent magnet (PM)-
electromagnet (EM) chicane

- Static PM field chosen to form microbunches at second IFEL (IFEL2)

- Variable EM field used to adjust phase of microbunches entering IFEL2
with respect to the laser field inside IFEL2

Second IFEL (IFEL2) is accelerator

- Features 11% gap taper (12% energy taper)
- Tapering important for efficient trapping and acceleration of microbunches



Schematic Layout of STELLA Experiment
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STELLA Experiment on Beamline #1

Chicane
(retracted)
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Successfully Demonstrated
Monoenergetic Acceleration With High
Trapping Efficiency

e ATF CO, laser delivered 1.7-2.7 TW/cm? intensity at center of IFEL2
- Sufficient intensity to drive 11% gap-tapered undulator
- Intensity lower in IFEL1 and sufficient to achieve ~+0.5% modulation

e Measured e-beam energy spectrum using energy spectrometer at end of
Beamline #1

- Spectrometer able to capture entire modulated energy spectrum
- Resolution of spectrometer is 0.14%

e Data spectrums show clean separation of accelerated microbunches from
background electrons

- Varying chicane EM field causes shift in microbunch energy gain
- Peak energy gain of >20% is highest yet observed for IFEL
- For 33-cm long undulator, represents acceleration gradient of >27 MeV/m



Examples of Experimental Results
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Energy Shift (MeV)
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Number of Electrons
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Experimental Results vs. Phase Delay
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Discussion of Experimental Results

e Model agrees with data within accuracy of known parameters
- Good agreement in gross features
- Some disagreement in fine details
¢ Fine details affected by precise overlap of e-beam and laser beam, etc.
e Can only estimate values of certain parameters

¢ Intentionally operated near threshold for driving tapered undulator

- Provides narrowest energy spread of trapped electrons

- Also meant spectrums varied greatly due to natural shot-to-shot variations
in laser beam pulse energy

e Below threshold tapered undulator performs poorly
e Hence, many laser shots collected during experiment
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Basic STELLA Approach Can be Applied
to Other Schemes

IFEL chosen for convenience, has inherent scaling limitations

STELLA-LW (short for STELLA Laser Wakefield) would apply basic STELLA
approach to laser wakefield acceleration (LWFA)

- First phase of STELLA-LW program recently approved by DOE

- Will present STELLA-LW program for approval by ATF Program Committee
First phase of STELLA-LW would:

- Build upon past ATF capillary discharge (CD) work for plasma source

- Diagnose CD using coherent Thomson scattering (CTS) for first time

- Demonstrate LWFA at 10.6 um for first time

Ultimately in future phases would like to:

- Demonstrate CO,-laser-driven LWFA buncher

- Combine with CO,-laser-driven LWFA accelerator
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Conclusions

e First demonstration of monoenergetic laser acceleration and high trapping
efficiency

- Observed >20% energy gain
Observed up to 80% trapping efficiency
Observed energy width of accelerated electrons as low as 0.36% (1c)

Demonstrated ability to control microbunch phase using chicane
Model agrees well with data

o STELLA-LW experiment will apply the STELLA basic approach to laser
wakefield acceleration

- STELLA-LW team of collaborators includes LWFA and capillary
discharge experts

- ATF has already demonstrated key components of experiment

e STELLA success brings us closer to someday realizing a practical laser
linac
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