

Laser Wakefield Acceleration Driven by a CO₂ Laser (STELLA-LW)

W. D. Kimura

ATF Users' Meeting Jan. 8, 2004

Work was supported by the U.S. Department of Energy, Grant Nos. DE-FG03-98ER41061, DE-AC02-98CH10886, and DE-FG03-92ER40695

Outline

- Background
- Review theory behind experiment
- Describe proposed experiment and predictions
- Review experimental plans
- Review program organization, collaborators, and schedule
- Conclusions

Background

- STELLA program successfully demonstrated important capabilities relevant to laser accelerator systems
 - Staging of microbunches and rephasing with optical wave
 - Monoenergetic acceleration of microbunches
 - High trapping efficiency
- STELLA used inverse free electron laser (IFEL) for convenience
 - Device is well understood, relatively easy to control
 - Has inherent scaling limit, process becomes inefficient at high γ
- STELLA approach can be applied to other laser acceleration mechanisms
 - Modulate e-beam to create microbunches
 - Trap and accelerate microbunches in stages

Laser Wakefield Acceleration (LWFA) Will be Emphasis of Next Program

- Laser wakefield acceleration (LWFA) is more scalable method
 - Gradients >1 GV/m demonstrated
 - Most experiments done using near-IR lasers, none at 10.6 μm
- Propose to apply STELLA approach to LWFA
 - Would be first to demonstrate LWFA driven by CO₂ laser beam
 - Call new program: STELLA-LW (short for laser wakefield)

Laser Wakefield Acceleration (LWFA) in Capillary Discharge

- Different plasma sources possible for LWFA
 - Capillary discharge chosen for STELLA-LW
 - Already demonstrated at ATF
- Parabolic plasma density guides laser beam
- Laser pulse excites wakefield
- Witness e-beam pulse energy modulated by wakefield

Resonant vs. Self-Modulated LWFA

• In resonant LWFA, the laser pulse length $\tau_{\rm L}$ is related to plasma wavelength $\lambda_{\rm p}$ by:

$$\tau_{\rm L} \sim \lambda_{\rm p}/2c$$

where c is speed of light

- In self-modulated LWFA (SM-LWFA), $\tau_{\rm L} >> \lambda_{\rm p}/2c$
 - Enhances growth of wakefield via stimulated Raman scattering (SRS)
 - Much higher gradients than resonant LWFA possible
 - Very nonlinear process, which may make control of wakefield difficult
- For ATF TW CO₂ laser beam 2-ps pulse length:
 - $\lambda_{\rm p}$ = 1.2 mm \Rightarrow $n_{\rm e}$ ~ 8 \times 10¹⁴ cm⁻³
 - 2-ps is too long for resonant LWFA, but too short for SM-LWFA

Pseudo-Resonant LWFA

- Existing LWFA code modified during STELLA program to model high-intensity short-pulse (2 ps) CO₂ laser beam
 - Work done by N. Andreev, et al.
- Discovered "pseudo-resonant" wakefield generation regime
 - Good wakefield possible even though laser pulse length too long for resonant LWFA and too short for self-modulated LWFA
 - Possible because pulse steepening occurs due to:
 - stronger self-focusing in the middle (maximum) of the laser pulse
 - Partial self-modulation on trailing edge of pulse
 - Effect independently uncovered by Z. Najmudin, *et al.*, ("Forced LW")
- In model simulation, 2-ps pulse effectively acts like 0.5-ps pulse
 - Can operate at $n_e = 1 \times 10^{16}$ cm⁻³, which is density for 0.5-ps pulse
 - Good wakefield generation possible (~1 GV/m) despite being off-resonance by $4\times$

LWFA Model Simulation for STELLA-LW

- Assume 2-ps, 5-J ATF CO₂ laser pulse drives wakefield
- Electron plasma density on axis is $n_e = 1.1 \times 10^{16}$ cm⁻³
- Conditions 5.5 cm into plasma

LWFA at 10.6 μm has Other Advantages

- Laser field parameter a scales as λ
 - Ponderomotive potential scales as a^2 (equivalent to λ^2)
 - For same focus size, 10- μm light gives 100× higher potential than 1- μm light
 - Can focus 1-μm light tighter to compensate, but also requires undesirable tighter *e*-beam focus
- Wakefield damping time $\propto n_{\rm e}^{-1}$
 - $n_e = 1 \times 10^{16} \text{ cm}^{-3}$ implies relatively long damping time (>100 ps)
 - Provides plenty of time to intersect witness electron pulse with wakes
- 10¹⁶ cm⁻³ is well below critical density for absorption of IR light
- Relatively long plasma wavelength (>300 μ m) may also help ease synchronizing with LWFA-generated microbunches in future experiments

Overview of STELLA-LW Experiment

- Phase I Program (being considered in this current proposal)
 - Demonstrate LWFA at 10.6 μ m inside capillary discharge
 - For 1.2 cm long plasma length, predict ~7-8 MeV energy gain
- Possible future phases of Program (not part of this current proposal)
 - Demonstrate microbunching using LWFA buncher
 - Demonstrate staging between LWFA buncher and LWFA accelerator
 - Demonstrate high-trapping efficiency, monoenergetic acceleration
- Long-term goal of Program
 - Demonstrate \geq 100-MeV energy gain using CO₂-laser-driven LWFA
 - Accelerate $\geq 5 \times 10^8$ electrons with narrow energy spread
 - Addresses challenge given by D. Sutter in 1992 AAC Workshop

Description of STELLA-LW Phase I Experiment

- Task 1 (Year 1): Build capillary discharge system
 - Based upon ATF capillary discharge design first developed by A. Zigler
 - Need to generate relatively low plasma density (~10¹⁶ cm⁻³)
 - Will be scalable to longer lengths
- Task 2 (Year 2): Demonstrate wakefield generation at 10.6 μm
 - Focus TW CO₂ laser beam into capillary discharge
 - Detect wakefield using coherent Thomson scattering (CTS) diagnostic
 - First time CTS used to diagnose capillary discharge
- Task 3 (Year 3): Demonstrate *e*-beam energy modulation by LWFA
 - Send e-beam into capillary after laser pulse
 - Measure energy modulation of *e*-beam

Review of Capillary Discharge Design

1) D. Kaganovich, et al., Appl. Phys. Lett. 71, 2925 (1997).

2) I. V. Pogorelsky, *et al.*, Appl. Phys. Lett., **83**, 3459 (2003).

Laser beam at Las exit w/o discharge exit v

Laser beam at exit w/ discharge

entrance

Capillary Discharge Issues and Plans

- Need 10¹⁶ cm⁻³ plasma density
 - ATF Channeling Experiment produced 10¹⁷-10¹⁸ cm⁻³ plasma density using 1-mm diameter capillary tube
 - Plasma density scales as IR_{cap}^{-2} , where *I* is discharge current and R_{cap} is capillary tube inner radius
 - Of order 10^{16} cm⁻³ should be possible if R_{cap} = 1.6 mm
 - At large tube radius potential issues include plasma stability, uniformity, and reproducibility
 - Oxford U. used H₂ inside ceramic tube, may make easier to achieve low plasma density plus provides other advantages
- First year of STELLA-LW program will concentrate on developing and testing capillary discharge
 - Will make modular, expandable design able to accommodate longer tubes
 - Can probe discharge using low power laser beam

Generation of Wakefield with CO₂ Laser

- During 2nd year of STELLA-LW will focus ATF CO₂ laser beam into capillary discharge
 - Need to deliver \geq 5 J, 2-ps laser pulse
- STELLA-LW can utilize similar laser beam transport design used by ATF Channeling and Compton Scattering experiments
 - Transport designs are proven and effective
 - Should be less complicated, more stable optical system than STELLA
- Key question is whether good wakefield has been generated
 - Different wakefield diagnostic techniques considered
 - Chose coherent Thomson scattering (CTS)
 - Amplitude and plasma density can be determined using CTS
 - Model predicts large amplitude waves appropriate for CTS detection
 - STELLA-LW will be first to use CTS on capillary discharge

Review of Coherent Thomson Scattering

- In coherent Thomas scattering (CTS), a probe beam is sent either along or across the plasma discharge
 - Probe beam can be different wavelength than pump beam, which helps eliminate noise from the pump beam
 - Plasma wave acts like a grating and scatters probe beam light
 - Generation of anti-Stokes (AS) light corresponds to wakefield traveling near speed of light
 - AS-light directed in forward direction corresponds to wakefield useful for accelerating electrons
- CTS used extensively by others (e.g., UCLA, NRL)
 - A. Ting (NRL) is expert on CTS and is collaborator on STELLA-LW

Possible CTS Arrangement for STELLA-LW

- Utilize 1.06- μ m laser beam used to drive ATF photocathode as probe beam
- Look for anti-Stokes signal emitted collinear with probe beam
- Expect ~3.3 nm shift from fundamental at $n_e = 10^{16}$ cm⁻³

Energy Modulation by LWFA

- During 3rd year, will send e-beam through wakefield inside capillary discharge
- Important to preserve *e*-beam quality during interaction
- Strong radial focusing forces exist in wakefield
 - Can avoid focusing by keeping *e*-beam diameter small
 - Model indicates *e*-beam diameter needs to be \leq 40 μ m
 - During Compton Scattering Experiment, e-beam spot size of ${\approx}15~\mu\text{m}$ rms demonstrated
 - Used fixed-strength, short-focal-length, permanent-magnet (PM) quad
- STELLA-LW beamline system will be designed to permit tight e-beam focusing
 - STI manufactures variable-strength, compact PM quads
 - Will also need good beam position monitors (BPM) to measure e-beam size

Integrated STELLA-LW Experiment

- Can use compact permanent-magnet (PM) quad(s) to focus e-beam into tube
- Will also include high-resolution BPMs along beamline

Model Prediction for Energy Modulation

- 3-ps e-beam pulse (equivalent to ${\approx}1$ mm length) overlaps several wakefield periods (~300 ${\mu}m)$
 - Expect modulation of e-beam energy
- Parameter values assumed in model prediction
 - *E*-beam energy = 45.6 MeV (not optimized yet)
 - *E*-beam transverse size, σ_r = 25 µm
 - Laser pulse length = 2 ps
 - Laser pulse energy = 5 J
 - Plasma discharge length = 1.2 cm (not optimized yet)
 - Predict peak energy gain of ~7-8 MeV

Other Experimental Issues

- Accurate measurement of laser power delivered to plasma important
- ATF has autocorrelator capable of measuring 2-ps pulse length
 - Enables more direct measurement of pulse length than possible during STELLA
- Different means will be explored to improve real-time measurement of laser pulse energy
 - Photoacoustic detector attached to back of mirror within laser system
 - Monitoring reflected light from CO₂ laser amplifier window
 - Monitoring reflected light from input window of capillary discharge chamber
 - Monitoring light transmitted through capillary tube

LWFA/Capillary Discharge Experts Part of STELLA-LW Collaboration

- LWFA theory and modeling
 - Prof. Nikolai Andreev (Russian Academy of Sciences)
 - Dr. Sergey Kuznetsov (Russian Academy of Sciences)
 - Dr. Alla Pogosova (Russian Academy of Sciences)
- LWFA theory and experiments
 - Dr. Antonio Ting (Naval Research Laboratory)
- Capillary discharges
 - Prof. Arie Zigler (Hebrew University)
- Plasma physics and laser acceleration theory
 - Dr. Loren Steinhauer (Redmond Plasma Physics Laboratory)

STELLA-LW Program Organization

STELLA-LW Program Schedule

Conclusions

- STELLA-LW experiment will apply the STELLA basic approach to laser wakefield acceleration
 - STELLA-LW collaboration represents a strong, well-balanced team
 - ATF has already demonstrated key components of experiment
- STELLA-LW (Phase I) will be first to:
 - Demonstrate LWFA driven by a CO₂ laser beam
 - To use CTS on a capillary discharge
 - To operate at ~10¹⁶ cm⁻³ plasma density in a capillary discharge
- STELLA-LW (Phase I) will lay foundation for more advanced LWFA experiments
 - Demonstration of LWFA buncher and generation of microbunches
 - Staging of LWFA devices
 - Ultimately, demonstration of 100-MeV LWFA-driven laser linac