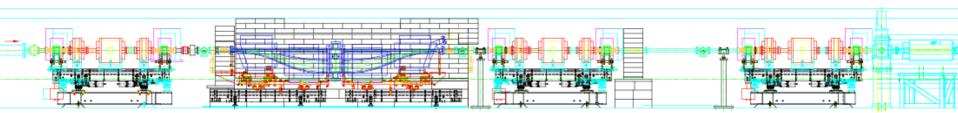
Operations, Performance and Upgrades

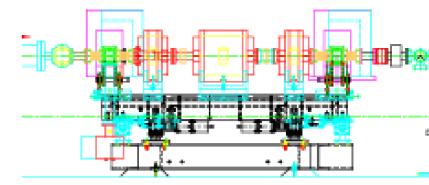
Vitaly Yakimenko

<u>12th ATF Users Meeting and ATF Program Advisory Committee,</u> January 8-9, 2004

New experiments bring more challenging requirements for the beam

- VISA needs to match large energy spread (few %) beam into the wiggler.
- DWA requires extremely accurate (less then 50 micron) day to day control of the e-beam trajectory.
- DWA pulse train separated by one RF period leads to large energy difference between micro pulses due to cavity loading. Compensation of the dispersion is needed at the level of a few mm.
- Plasma Wakefield experiment needs extra small focus (~10 micron) of the bunched beam (large energy spread).
- Fast switching from one experiment to another on the same beam line.


Single best advance


Electron beam emittance in the range 1-2 μm for 0.5 nC is measured by users almost every run.

- MathCAD based measurement/ tuning worksheet allows simplified beam tuning.
- Sufficient number of BPMs with adequate resolution in the H-line
- Sufficient number and correct location of steering coils
- No questions about quality of the beam it is known every run

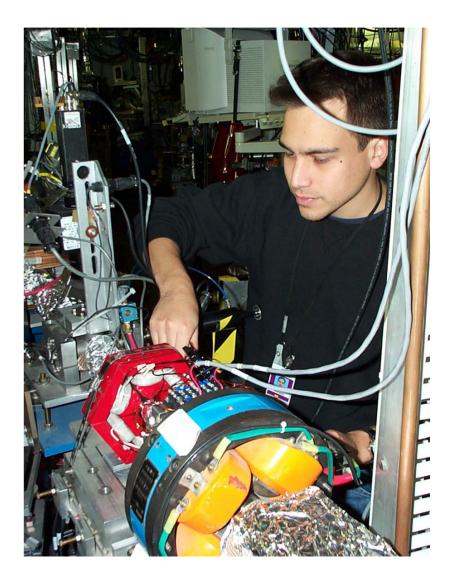
H-line upgrade

- Improved:
 - triplet focusing (natural for a round beam)
 - diagnostics (standardized hi-resolution imaging)
 - steering magnet locations (to minimize related dispersion excitement)
 - radiation shielding (ES&H and work friendly)
- Laser based survey of H-line
- Chicane (compressed beam to experiments)
- Beam based alignment (path to better beam)

Laser based survey

- Quadrant detector was used to verify quadrupole survey and align BPM.
- We enjoyed
 - up to 10 μm accuracy (5 times better than traditional survey)
 - ~3 times faster
 - no dependence on external resources

Chicane



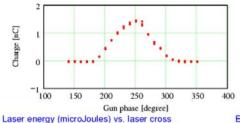
We expect 0.5 nC beam, 0.5 ps (FWHM) long with 0.5% energy chirp (FWHM)

- it would be challenging to focus into ultra small spot size due to energy spread.
- x-bend section in the H-line could possibly remove correlated part of the energy spread

Sextupoles in the F-line

- Sextupoles were installed in F-line by the UCLA group
- Sextupoles were successfully used by DWA and VISA experiment
- Sextupoles in F-line can compensate
 - chromatic effects at locations of small beam size
 - vertical dispersion by coupling with horizontal

Standardized BPM (zoom lens with doubler and 20 cm achromat)


		Old style	Min	Max
			zoom	zoom
Working distance [mm]		155	160	160
Field of view [mm]		18x13	59x37	11x7
Relative inte	nsity [a.u.]	279	60	62
Resolution	center	20	6	29
[In/mm]	edge	14	4	20
Pixel Calibration [µm/pix]		24x29	77x91	14x17
Images			and the second sec	+++++

Automated beam parameter measurements

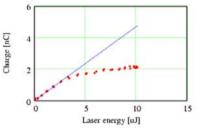
Measured on 12/12/2003 12:04 PM

Photoinjector performance

Charge (nC) vs. laser to RF nominal phase (degrees with arbitrary zero point)

polarizer (step number, arbitrary units):

Derived quantities:


Maximum available laser ene	ergy [microJoules]:	MaxLaserEnergy =
Space-charge limited laser e	nergy [microJoules]:	NomLaserEnergy =
Quantum efficiency [nC/micro	oJoule]:	QuantumEfficency
Quantum efficiency [percent]	:	0.466QuantumEffic
Maximum (space-charge limi measured at a laser energy o	tted laser energy) charge [nC]: of:	MaxCharge = 1.452 LaserEnergyMean =
and at a nominal gun phase	of:	MaxGunPhase = 25
Statistics: Laser energy standard deviat	tion [%]	LaserEnergyStdDev
Peak to Peak laser energy jit	ter [%]:	LaserEnergyPeak2F
Operating point:		
Nominal charge [nC]:		NomCharge = 0.19
@ Gun Phase [deg]:		NomGunPhase = 1
Gun Forward Power [Volts]:		GunFrwdPower = -
Single pulse mode [V]	Repetion rate [1.5] Hz	Shutdown time [

Vacuum:

$GunVacuum = 1.382 \times 10^{-9}$
$LinacVacuum = 2.069 \times 10^{-9}$
HLineVacuum = 1.364×10^{-8}
SafetyVacuum = 2.408×10^{-9}
$BL1Vacuum = 1.623 \times 10^{-7}$
$BL1SP = 2.721 \times 10^{-9}$
$BL2Vacuum = 4.862 \times 10^{-9}$
$BL3Vacuum = 1.312 \times 10^{-8}$

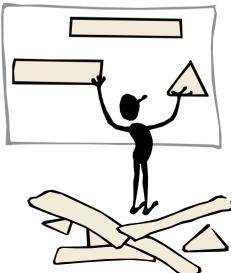
.....

Electron charge (nC) vs. Laser energy on the cathode (microJoules):

1	MaxLaserEnergy = 10.04
es]:	NomLaserEnergy = 3.204
	QuantumEfficency = 0.471
	0.466QuantumEfficency = 0.22
charge [nC]:	MaxCharge = 1.452 LaserEnergyMean = 3.276
	MaxGunPhase = 250.602
	LaserEnergyStdDev = 1.425
	LaserEnergyPeak2Peak = 7.355
	NomCharge = 0.191
	NomGunPhase = 190.602
	GunFrwdPower = -1.14

- Operator independent injector parameter logging
- Simplifies start-up
- Suggests operating points
- Easy to ensure daily data collection

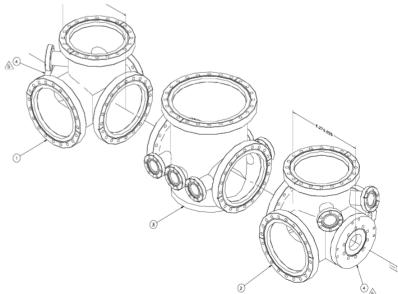
Use of MathCAD by users


- Users can program own algorithms, verify ATF operating parameters
- Reduces waiting for control system personnel to implement desired features
- Data acquisition, timing, synchronization issues all tested/verified by ATF staff; User can harvest desired information from database
- Physics is more transparent; encourages sharing of standard operations

ATF infrastructure changes

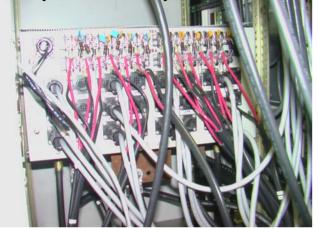
- New experimental chamber on Beam Line 2

 More flexible scheduling of experiments
- Darlington power supplies
 - Easy after hours replacement of burned out channels
- Motorized zoom lens/Iris Controls
 - New channels added
 - Computer based address selection
- Automatic temperature logging
 - Faster turn-on procedure

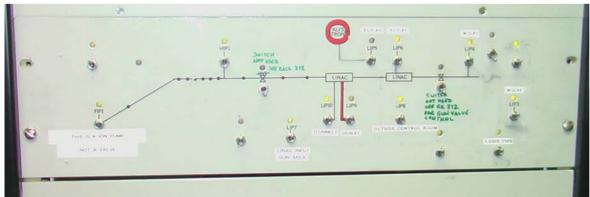


Standardized experimental cell

- Classes of experiments:
 - Thomson scattering
 - plasma channel
 - structure based accelerators
 - Diagnostics development



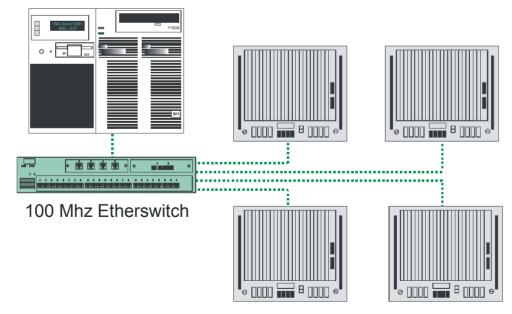
- Use of the cell will simplify
 - experiment installation
 - diagnostic setup
 - safety approval
 - beam tuning
 - scheduling


Operator friendly modifications

Simplified replacement of burned out power supply channels

Simplified vacuum valve controls arrangement

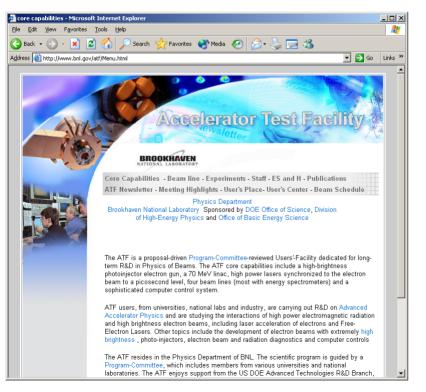
Similar modifications are considered for other systems

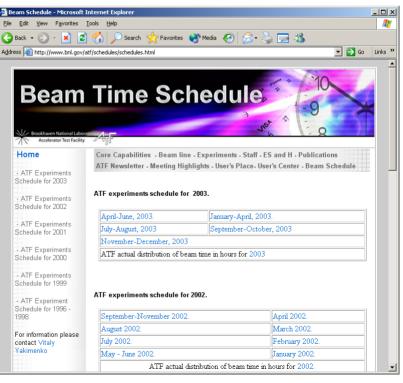

Beam line 2 upgrade

- Triplet based focusing with new more powerful quadrupoles
- Adequate number of high resolution BPMs
- Proper location of steering magnets
- Rail based component mounting
- Laser based magnet survey
- Standardized experimental cell with CO₂ delivery and optical table is planned

Computer control system

- New control system to be phased in starting about March 1
- Faster, more reliable, less worries about support/hardware maintenance
- More powerful machine ==> new capabilities for users (e.g., dual frame grabbers)
- Present system will be retired soon after
- No downtime impacting user experiments during last 2 years
- Expect same reliability once initial shakedown complete




IBM Netfinity 8500R

Data acquisition hardware

New ATF web site

- Improved, user-oriented navigation
- Easier to locate information on schedules, contacts, etc.
- On-going process with more improvements to come

New ESH position at ATF

- Improved support of ATF users at RHIC/AGS User's Center
- New procedures to rapidly assess & enforce compliance with BNL training and documentation requirements
- Rapid ATF laser restart following BNL site-wide laser shutdown
- Chicane installation (shielding, documentation, approvals)
- Revision of ATF training & migration to convenient webbased recertification
- Remediation of lead brick contamination
 - Facility-wide program for replacement of bare lead with highimpact encapsulated bricks
- Revision of ATF ESH documentation

Major challenges and resolutions

- Multipactoring in the RF Gun We plan to install upgraded gun IV in March. This will improve
 - thermal stabilization
 - image diagnostic of the laser spot on the cathode
 - much larger maximum laser spot size on the cathode
 - vacuum pumping
- LINAC was bled up to air due to vacuum valve failure
 - valve replaced, LINAC baked, pumps and gauge changed
 - Vacuum is at pre-accident value
- Beam stop rebuilt and recertified

Summary

- H-line rebuilt
- Chicane compressor installed in H-line
- Sextupoles installed in F-line
- Beam line 2 upgraded
- Standardized experimental cell (beam lines 1 and 2)
- More experiment locations
 - 30% increase in the number of magnet power supplies (doubled in power)
 - 50% increase in the number of Beam Profile Monitors (BPM) on all beam lines
 - New standardized HIresolution imaging system for BPM

More independent ATF operation by users supported with:

- Widely used MathCAD access to the control system
 - Beam tuning
 - Custom tasks
- Power supplies easily switchable at night by user
- Improved vacuum valve arrangements
- Computer controlled Zoom lens/Iris selection