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1.1 YAG properties

* YAG:Cecrystals(Y,Al.O,,) arewidely used asa
scintillating material for electron microscopy:

Relevant Characteristics of YAG:Ce

Index of Refraction 1.82
Wavelength of Peak Emission [nm] 550
Density [g/cm3] 4.57
Radiation Length [cm] 3.5
Photon Yield [#ph/MeV] 8x103
Scintillator Efficiency [%] 15
Cerium Concetration [% of yitrium] 0.18

» Advantagesfor using YAGsfor electron beam profile
measurements. vacuum-friendly, semi-infinite life time,
excellent resolution:



1.2 Motivation for the Experiment

 Vitaly observed inadequate behavior of aYAG crysta
while running at ATF: the beam image was very smooth
and did not respond well to the small changesin
guadrupol e settings.

Later, with the OTR screen, he observed smaller beam
Image, with the well defined structure in it, perfectly
responsive to the e-beam optics.

o Alex Lumpkinin his paper described the “size-blurring”
effect on the Y AG beam profile monitor at APS. He also
compared Y AG datawith the OTR, and his data show
Image degradation, which starts at the charge densities of
about ~ .02 pC/um?.

In the case of ATF beam (Q = 1 nC) it corresponds to the
beam size of s, = 90Mm.

* The beam required for VISA experiment is smaller (60
um), and areliable performance of Beam Profile Monitors
IS necessary for proper beam matching into the undulator.

e Goal: totest aYAG performance as a beam profile
monitor at ATF with respect to the OTR, phosphor screen
and wire scan based techniques.



1.3 Experimental Set-Up

» The target was constructed, which contained five
diagnostics, including two YAG crystals, 0.25 mm and
0.50 mm thick, respectively:
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» With the parabolic mirror and alens, the light from the
target was imaged into the focal plane of a CCD camera:
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2.1 Data

* Weobserved asignificant “size-blurring” of the beam on
all scintillating monitors:
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» To compare with the wire scan results, we have to
Integrate images over the y-coordinate:
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» Asthe beam strongly deviates from Gaussian shape, the
difference in the FWHM is even more significant:
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2.2 Possible Mechanisms

(1) “Size-blurring” is due to the noise and measurement errors
(which adds quadratically):
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 Oveall, we arelooking into quadratic error of
S o ~100 mMm

The causes could include:

e Limitson optical resolution of the system (aberrationsin
the lenses, misalignment, background subtraction in the
framegraber, etc.).

» Depth of focus and multiple reflections issues attributed
uniquely to YAG.



« Limited resolution for high energy electrons or/and due to
the secondary electrons (< 30 pm spot sizes measured
with YAG were reported by Lumpkin).

(2) Alternatively, the effect can be due to the saturation in the
Y AG crystal, which isintensity dependent. Then, at the
tails of the beam, where the charge density is small, there
should be an agreement between YAG and OTR:
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It follows from the plot, that the effect becomes important
at charge densities
dQ

=< - 0.01 pC/mm?
dA P



3.1 Second Experiment

o With the smaller beam, we compared Y AG performance
and awire scan for different charges.
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3.2 Taking Out the Known Errors

* Thewire hasawidth of 25 pm, which adds as
S, ~8.5mMm.

 Fromthe YAG datawe can “symmetrize” the datato
compensate for overfocusing in one plane.

» Thedepth of focus and back wall reflections are
calculable problems:

* With our angular acceptance of 19°, while camerais
focused on the front surface, the effective resolution of the
YAGiss; ~43 mm (for .50 mm YAGQG).

 Weaso did the measurement, by placing an aperture into
the beam path, to cut the acceptance angle:
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Resolution of the rest of the optical system can be found
by looking at the light coming out at the Brewster's angle,
and scattered of the crystal edge:




3.3 Sgnsof Saturation

 Now we can subtract all the known effects, described
above, and we are still 1eft with a big discrepancy between
the Y AG screen and wire scan measurements:
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* One can see the charge dependent behavior, that has to be
attributed to saturation.

 We can also calculate the expected energy from the YAG:
& X 0
E.q=E %1- e 05 » . 4TMeV DW» 0.026

, DW
Er = (8" 10°7w) (N, q[MeV]) g > 180



Using julemeter, we measured the actual energy
measurement (for .25 mm YAG):
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The detector is calibrated to 2.33’ 108% . With the 50%
efficiency @ 560 nm, the measured energy valueis:

Emeasured M 2nJ

Even considering possible misalignment and g-ray |osses,
thereis at least an order of magnitude difference between
the measured and predicted values, which also indicates
saturation.



4.1 Saturation model

* We can calculate the density of the scintillating sites
available in the crystal (considering the 15% efficiency):

3r

mpM

n,=.15", »3.7" 10" cm™

» 25" 10"° cm™

N, =.0018

 Thedemand density in our case can be estimated as
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» Peak demand exceeds supply by afactor of a°© % » 4.6

* Now we can write an equation, for the response of a
system approaching saturation:
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4.2 Data Analysis Based on the Model

 Theactual intensity seen on the Y AG screen can be
written then (all the units are normalized to unity):

_1-exp(-ax,(r))
- a

| (1)

« With thismodel we can generate the Y AG image
properties, based on the wire scan data:
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* Also, knowing from wire scan, that the beam width
changes as

Sy Q"
we can analyze the charge dependent behavior of YAGS:



« Total energy radiated, as afunction of charge
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And the beam spot size as afunction of charge:
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The comparison let us believe, that we are on the right
path, and the described model indeed resemble all the
Important features of observed phenomena.



5.1 Conclusion

 YAG:Cecrystassaturate. Their use as abeam profile
monitors should be limited to charge densities not
exceeding
dQ

== £ 0.01 pC/mm?
dA P

for the energy range ~ 100 MeV. For higher energies, the
limit can be even lower.

» Alternative methods (OTR) are more reliable for high
brightness sources.

e |tispossible, that groups relying on YAGsfor their
emittance measurements have better beam than they
measured.
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