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11 THE ELECTRON BEAM MEASUREMENTS 
 
 
 

11.1  Emittance Measurement Using Quadrupole Scan 

In order to measure the emittance we need to measure the elements of the beam 

matrix, which was described in Section 2.9, and then calculate its determinant. For this 

purpose we use a quadrupole and a screen (or camera) separated by a known distance as 

shown in Figure 11-1.  

 

Figure 11-1 The sketch of quadrupole scan technique 

Let qσ  be the sigma matrix at the quadrupole.  

For the beam vector qX  at the quadrupole, we apply the Eqn 2.9-21 as 
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Similarly for the beam vector sX  on the screen it can written as  
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where sσ  is the sigma matrix on the screen. Assuming the transport matrix from the 

quadrupole to the screen is 
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Eqn 11-2 can be written as  
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Comparing the Eqn 11-4 with the Eqn 11-1 tells us that the transform of the sigma matrix 

is  

RR s
t

q ** 11 −− = σσ         Eqn 11-5  

  By inverting we obtain 11 )(** −−= t
sq RR σσ  and thus  

t
qs RR **σσ =         Eqn 11-6 

 There are three unknowns in qσ  matrix. The only parameter that we can measure 

is the beam size on the screen, which is 11)( sσ  element of the sigma matrix. The R matrix 

is a multiplication of quadrupole matrix and a drift space matrix. The quadrupole matrix 

is calculated as a function of quadrupole current and the drift matrix is a function of the 

distance, which is constant in this case.  

Eqn 11-6 can be expanded as 22
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[10]. By measuring the rms beam size ( 11)( sσ ) on the screen for a number of 

quadrupole current settings we obtain a set of equations and solve for the three elements 

of the qσ  matrix. Thus we can calculate the determinant of the sigma matrix and 

emittance. This is the geometrical emittance. The normalized emittance, which is a 

conserved quantity under acceleration, is obtained by multiplying the geometrical 

emittance by βγ. 

The typical normalized emittance at the ATF is about 3-6 µrad. 

11.2   Electron Beam Pulse Length Measurement  

The pulse length of the electron beam is another important parameter. The FEL 

gain depends critically on the peak current, which in turn depends on the charge and the 

pulse length of the electron bunch. As we mentioned in Chapter 3, charge is measured by 

the Faraday cup. Thus we need to measure the pulse shape of the electron beam to 

determine the peak current.  
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The electrons are initially accelerated by the RF gun up to 4.5 MeV energy. Then 

the two sections of the Linac accelerate the electrons to the design energies of the various 

experiments. In the normal operating mode of the Linac, the electrons are accelerated on 

the crest of the accelerating field for minimum energy spread as shown in Figure 11-2.  

 

Figure 11-2 On-crest accelerating field waveform of the electron beam 

In this phase there is no linear relation between the pulse duration and the energy spread. 

However if we accelerate the electrons on the rising edge of the accelerating field as 

shown in Figure 11-3, then the pulse duration is almost linearly proportional to the 

energy spread. Since we want to avoid space charge effects we do not want to reduce the 

accelerator field at the beginning of the Linac. Here we use the virtue of having two 

sections of the Linac. The first section is tuned for the minimum energy spread (on the 

crest of the field or at a phase of 90 o) and the second section is tuned to the rising edge, 

at about 60o, using a mechanical phase shifter. Thus by measuring the energy spread we 

can measure the pulse duration of the electron beam.  
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Figure 11-3 Off-crest accelerating field waveform of the electron beam 

The energy of the electrons is 

21 EEEE g ++=         Eqn 11-7  

where  gE  is the energy gain in the RF gun and the 1E  and 2E  are the energy gain the 

first and second section respectively. The energy gain in the second section can be 

expressed as  
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 where φ∆=wt  and 600 =φ  o. In this region energy spread can be expanded as 
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and the higher order terms are neglected. Thus  
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We measure the energy spread with a spectrometer consisting of the high energy 

slit (HES) and a Faraday cup. The HES is positioned downstream of the first dipole as 

described in the Chapter 3. It is located where the betatron oscillation is minimized, 

therefore the horizontal beam size is dominated by the energy spread. Since the overall 

energy is reduced we reduce the dipole current by 20 % thus we can see the beam on the 

HES. We close the opening of the HES to 2.6 mm, which is equivalent to 0.5 % of the 
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energy (~1.1 ps) [10]. We measure the charge passing through the slit with the Faraday 

cup and scan the mechanical phase shifter, letting different parts of the beam pass 

through. This scan gives us the longitudinal current distribution of the electron beam (see 

Figure 11-4) 

 

Figure 11-4 Longitudinal pulse shape of the electron beam 

Thus the pulse length is determined by FWHM of the curve. In the case of Figure 11-4, 

the result is approximately 6 ps.  

 

 


