
2.11 Transverse Coherence 

Similar to the electron beam the radiation beam also has a beam size and the 

divergence. Let xσ and rσ  be the electron and radiation beam sizes, xσ′ and rσ′ be the 

divergences of the electron and the radiation beams respectively at the waist positions. 

The emittance can be written as  
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The corresponding equation for the radiation is  
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Thus the beam can be described as the convolution of a coherent radiation and the 

probability distribution of the electrons as 
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If the electron beam moments can be neglected compared to radiation moments then 
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In this case the radiation beam is transversely coherent which means the radiation would 

show Young interference fringes.  If 
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incoherent, and will fail to produce Young interference fringes.  

 

 

 

 

 



2.12  Temporal Coherence 

Longitudinally, a coherent wave can be represented as  
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      Eqn 2.12-1  

We are assuming a Gaussian distribution where τσ  is the coherence length in time and 

τσc is the coherence length in distance. The Fourier transform of the time domain gives 

us the frequency domain. The relation between the coherence length and the rms of the 

frequency profile 2
0 )(wε  can be derived as: 
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Another form of this expression is  
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The Eqn 2.12-3 can also be written in terms of wavelength, which we measure with the 

spectrometer as: 
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This expression is for the rms power widths of the time and frequency distributions. In 

the experiment we usually prefer the FWHM values thus the expression becomes 
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