2.5 The Fluid model
In this section we will describe the distribution of the electrons in the bunch.

We have coupled Maxwell-Vlasov equation from the previous section.

2 .
(2T, L g oMKW g oy r) Eqn 2.5-1

z cft 2k, 29, i

Let’s concentrate on the right hand side of the Egn 2.5-1. If we average over a small

volume DV
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where n(r,t) isthe particle density.
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Let no be the peak density and n, f (zt,9,r. ) be the distribution function such that

n(r,t) = ¢n, f(zt,g.7.)dg isthe particle density.

Then Egn 2.5-3 becomes
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Where D, is
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It is more convenient to use the independent variables (z,q) instead of (zt). We change

the variables using the definition of phase from Egn 2.3-16. We obtain

(1+k l+ir<|A2)E:@df <e' >)dg Egn 2.5-6

ﬂz " ﬂq 2' ks gO

It is clear that in f(zq,g) the only components, which will contribute to the

growth significantly, are the ones near € . Let F be the slow varying amplitude.
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f =Fe“ +cc.+ f, Eqgn 2.5-7
In this definition f,represent the smooth distribution and F represent the microbunching.
In Egn 2.5-6 the term
¢(f <e'™ >)dg = ¢Fdg + Oscillating term
So we write Egn 2.5-6 as
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and get envelope Maxwell equation. (t ° k,z)

The Coupled Maxwell-Vlasov Equation
Remembering Egn 2.4-10 and Egn 2.4-11 we had
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This is a Hamiltonian system. Thus the distribution function obeys the Liouville's
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Using Liouwville's theorem and arranging the slow and fast parts of the distribution
function we can obtain the Coupled Maxwell-Vlasov equations as:

7.1 1 2
L N2 )E = D— dg Eqn 2.5-9
(dt fa 2kk, ) g~ a
(—+2g Doj)F=p, = Lo g Eqn 2.5-10
o o ﬂg

26



