2.7 The Initial Value Problem in 1-D Theory

In this section we will consider the initial conditions and solve the electric field.
In the previous part we had obtained the expression for Fourier Laplace transform of E

(Egn 2.6-9). Using that expression, we can get the equation below

_ W2 _
E=———7——3S Egn 2.7-1
W - Wq- (2r)°
Remembering Egn 2.6-10
S=iE¢ =0,q)- 2y ¢ 2049)y, Eqn 2.7-2
go W_ zg B gO
%

We assume initially there is no energy modulation so we assume F is proportional to
delta function:
F(t =0,0,9) ~d(g- g
Then
S—iEt =0)- 2P aFq = Eqn2.7-3
S=iEt =0)- ——2¢F( =0,q)dg an <.
Wg,

There are two initial conditions.

1) The first one is the Amplifier case where there is radiation initially but no distribution
change in the electron bunch:

Et =0)* 0,E(t =0)=0

2) The second one is SASE case where there is no radiation initially so it starts from

noise: Et =0)=0,F( =0)1 0

2.7.1 FEL Amplifier:

Here we solve the first case where we have initial radiation but no density

modulation. In thiscase S =iE¢t =0) Therefore Eqn 2.7-1becomes
E=gE( =0) Eqn 2.7-4
Where
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= |V\F E -
= gn 2.7-5
e Wow- @y

If we take the inverse Laplace transform of the Eqn 2.7-4 we get
E(t.q) = gEC =0) Eqn 2.7-6
The Inverse Fourier transform of ¢ can be calculated using residue integral.

(Remembering w=2r1 and po 9 - _DW)
2r  2rw,

When t >0 the integral becomes equal to summation of residues around the poles.
Weobtainthepolesas 13- Di2-1=( - 1,)(I -1,)(1 -1,)
So g(t,D)ywould be equal to

a(t ,D) _ | l2e-i2rllt N [ 22e-i2rI2t N [ 32e-i2rI3t Eqn 27_7
(Il' Iz)(ll' Ia) (Iz' Il)(lz' Ia) (Ia' Il)(la' Iz)

The physical meaning of g is the gain of the electric field

Limiting cases:
1) t=o0, 5:%+%+%:1 which is the beginning of the wiggler.
2) D=0, rt >>1 firstterm dominates
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Figure 2.7-1 The roots of the cubic equationin | , providing the growth rate

=1 imay =23
2
I | =1Therefore g :%eﬁrt Eqn 2.7-8
— 1, J3rN _ 1 % -
P =—g% wp ==glep Eqn279
out 9 n 9 n
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Figure 2.7-2 Gain vs. wiggler length (log scale)

Synchrotron rotation Frequency and Saturation

As described in section 2.2 the synchrotron frequency is the oscillation frequency
between the energy modulation and the phase. As the field grows the synchrotron
frequency also grows. This means, as the bucked height shown in Figure 2.7-3 increases,
the energy spread of the beam increases due to the interaction with the radiation. Thus the
whole picture just expands. However when we reach the saturation the field can no
longer grow. The energy spread causes over bunching as shown in Figure 2.7-4 and

electrons cannot lose energy any more.

¥ ¥

Figure 2.7-3 Electrons phase space plot in the exponential growth regime. The figure on
the right shows growth in both electron modulation and bucket size.
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Figure 2.7-4 Electrons phase space plot at the saturation regime. The modulation and the
separatrix are shown. The separatrix does not grow and the electron distribution starts
executing a synchrotron oscillation.
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Figure 2.7-5 The FEL gain along the wiggler, showing start-up, the exponential regime
and saturation



Saturation condition
Given the growth rate im(w)=+3r FEL reaches the saturation condition when

Im(W) =W, . The solution of the pendulum equations for saturation yields that

w;? = 2D:E therefore 3,2 = 2D:E Eqn 2.7-10
Y9 Yo
We can calculate Electric field as
2 2
=3 % Eqn 2.7-11
2D,

Thus the power density

5.

9 1
7 _Z(r90)4 Eqn 2.7-12
0

27,D,’

Using the definition of r

(2ry*=220:  the power density becomes

Y
E°_ 9 1 _9 2 E 8
< =-=2pD,rg,—— =—rnemc gn 2.7-13
27, 64 D, go ZOD22 16 Ny 9o

Saturation power

|E 9
P =" A="r .ncAmc?
S ZZO 16 n0 gO

|2

Egn2.7-14

where A is the cross section area.
ncA isthe number of electron/sec, thus ncAmc?y, is the electron beam power Pe. As a

result we achieve the simple expression for the saturation power as
P, @rP, Egn 2.7-15
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2.7.2 1-D SASE Theory

In this section we are going to explain the other initial condition which is SASE

case where

Et =0)=0,F(t =0)1 0 Eqn 2.7-16

We had defined 5= ™ in Eqn 2.7-5. We obtain § by inverse Fourier-
We- WP - (2r)®

Laplace transform of this expression.

§=L o™ aw Eqn  2.7-17

-¥+is

If we integrate Eqn 2.7-17 with respect tot we get

¥ +is - W
Sy =z €

~ 1
dt=g=— O §——dW
O 797 09w

which yields

W Eqgn 2.7-18
W - W - (2r)°

F(t =0)~d(g- g,) Thusif we substitute these Eqn 2.7-2 we get

g=

J— p—

E=9J, Egn 2.7-19

where J, is defined as

3y © g%(‘f (t =0,q)dg Egn 2.7-20

The meaning Jp is transverse current and

3@ = L =0a)dg Eqn2.7-21

Therefore inverse Fourier-Laplace transform of Eqn 2.7-19 gives us

Et.9) = 5.0 ¢ =0.0)dg Eqn 2.7-22
0

and  E(t.a)=¢J,@)9 a-a)dg’ Eqn 2.7-23

is the convolution integral.
The distribution function was given as t @f, + (Fe +c.c.)

F(t =0,q) = fe' + other freqauncies
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As we mentioned earlier in section 2.5, during the FEL process, the components that are
proportional to phase factors other than & can be neglected because they will be off

resonance. Therefore we can write Eqn 2.7-21 as
@)= 2 =00)d9 @ % 10,0t =0)dg Eqn 2.7-24
0 0
Then the convolution integral (Egn 2.7-23) becomes a summation because of the
d(z- z))

DKy & igi. ]
E(t,q)@fae‘”g(t,q-qj) Eqn 2.7-25

o'l

The contribution from every electron evolves from a delta function to a greens function

g. The sumis over these green functions with a phase factor @ for each electron.

SASE power
Now we would like to calculate the SASE power. The expression for power is as
follows:
2
polE A Eqn 2.7-26
27,

(A=beam cross section area)
Since E is a summation over all electrons SASE power would be ensemble average of all
electrons.

Ef =(EC. 0E*.9) =( 2Ky § dwige q-q)g*t.q-q,)> Eqn 2.7-27

o' ij

Thus the power is

<P>- A DK e o gyPe L DK e ooy Eqn 2.7-28
22, g’n Galet.a-a) 2Zgznoollqm( q-a)

0 Jo "1 0 Yo

where (N, =nyA)

The power spectrum
Now we would like to calculate q¢ integral in Eqn 2.7-28 to get power spectrum.

g istheinverse Fourier-Laplace transform of 5

. 1 i E 2 7'29
== d n2.

g 2 oU€ 'daq q

Plugging this in Eqn 2.7-28 and taking the proper integrals gives us
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<p>= B it af Eqn 2.7-30
4pZOgo nO

We can get rid of the integral by differentiating both sides with respect to g (qq - Wand
W

k, =) and obtain the expression for power spectrum.
Cc

P D—12|*(t ) = % (2r gt q)f Egn2.7-31

Thus we need to calculate the Green’s function g(t ,q)

From Eqgn 2.7-18 we can see that

g=-iwg  where w=2r|

In the previous section we had driven the expression for g by calculating the inverse

Fourier-Laplace transform. Similarly we can do the same thing for g .

~ 1 ¥_
Y= — e ™ aw Eqgn 2.7-32
g 2 (0

-¥

We plug Eqgn 2.7-18 in Eqn 2.7-32 we obtain

~_ 1% w e Eqn 2.7-33
S Owowe @yt W A

When we do the same w=2r1 and po 9 - _BW  change of variables and we get same
2r  2rw,

contour integral except the nominator will be proportional to | . We will have same poles

so that summation of residues will be

H -i2r] gt -i2rl g

~ i | e | g2 | € U

=S b 12 g : Eqn 2.7-34
D o & 1) 0,10 1,1l

From this expression we can also see that

d ~ -~

d == Eqn 2.7-35
w94 q

For 2rt <<2lwe get the spontaneous radiation solution which yields
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&, tq()2
- ¢cSin— - :
|g(t ,q)|2 ¢ tqz “t 2 Eqgn 2.7-36

2 o
For the end of the wiggler (t =k,L,,)

Kb DV (g

S S

Thus we can express power spectrum as

7 2
6. W
SINPN, (— - 1) -
< S_VPV >= % (2r )t 2#3 Egn 2.7-37
e u
A pr(i - 1) ‘
g A H
Note that (2r )° p %) =en,C Eqn 2.7-38

therefore the spontaneous emission is linearly dependent on the charge.

Qualitative description of spontaneous radiation bandwidth and opening
angle
We can plot the power spectrum using Eqn 2.7-37 as follows:

<ﬁ>
e

fau)

W W (au)

Figure 2.7-6 The power spectrum of the spontaneous radiation.
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This plot is only for one frequency detuning value. Since the process starts from the noise
in redlity there is no specific frequency detune so we need to integrate over al detune

values.

< - (2
(&sinpN,qu . _ 1 Egn 2.7-39
o« —qdg=— gn 2.
§pNg 0 N,

Therefore total power spectrum will be

" " 2
_@PO 1 %EO :rnCQO(Zr )3t2

=¢c—~+ — where + Eqgn 2.7-40
edw g, N, edw g,
08895 _ 1 . . : .
Also @N—IS the full width at half maximum (FWHM) bandwidth of the

w w

Spontaneous radiation spectrum.

The wavelength as function of opening angle q is as follows:

I, .. K2 :
| :E(1+7+92q2) Egn 2.7-41
Thus
DI 2| :
L @% abq’ Eqn 2.7-42
1+ —

Since the widthis 1 |
N

w

I N, 2

S w

Thus we have the opening angle as:

K2
Jie
g=|2s = AV 2 Eqn 2.7-44
NS VLo gyN,
This narrow bandwidth-opening angleis << 1
g
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High gain limit
In the High gain limit ¢'#"'¢ term dominates in Eqn 2.7-34 thus

| e|2r|1t

()@_u 1,0, 15)

where

| -1, |@‘/§’| |1|@L

The |, in the exponent needs to be calculated more accurately
1°-DI?-1=0

for small D, |,isestimated as

21 1 -2
3+D+e3D2
1 @ 3 9

RERREr®

Im(l,) = > 18
SASE power (1-D)
The power spectrum expression for this case is

i2rig 2

ngo —0 s e
<o @Al =R e o S

By integrating over all frequencies we obtain

S w 2./3rt

V2

pD —;rmc g,

where
=2rw, (i)2
Relation to the noise power:
The power can be expressed as

13— a@lPs
P:—eLG S —9
9 ao ng\Ngnoise

where noise power is
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Egn 2.7-47

Eqgn 2.7-48

Eqgn 2.7-49



EEO =T e, Eqgn 2.7-50

SASE Bandwidth
Full width of SASE is
Jops,, \/_Zr(3‘/§)2—(6‘/‘§3r 2 3\/1_3rlw)2_(3\/f_3r
S LW W
using the definition of s, from Eqn 2.7-48.

2 Egn 2.7-51

Full width of spontaneous radiationis _1 . Thus the ratio would be
N

w

DNSASE 2 4p\/:_3r 3Nw|w 3 Lw Lw -
U —(3/3rNL )2 = (2P S w 2 2 Eqgn 2.7-52
s =@, = (R ey <4pLG>@(LG>

Therefore when
L, >4L, SASE bandwidth is larger than spontaneous radiation when

L, <4L, exponential growth termis not dominating yet.

Saturation length for SASE
We had obtained the expression p_ @ P, where p,=ncAmc’g, is the electron
beam power.

From Eqn 2.7-47 we have

I‘W

pD) ::_gL r ITKlzgo j% et Eqn 2.7-53
P, =mc?g,n,c Where n =nA Egn 2.7-54
Thus
Ly L
p(D) :éegrpelii ::_gLeLGrPENL Eqn 2.7-55
n|

where N_ =n,I, isthe number of electron in the coherence length.

The coherence lengthisgivenas | = @C =N, S(ﬁ &)2

w

At saturation
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P'® =P, =rP, Therefore we need to have

(o} g [} W S 3 LW
Thus
1 1
N, =20 bo (By2cbny
ec 1, 3 G

Let'stake Lw =x and get Eqn 2.7-56 as
L

X

& -

Jx e

Example:

5.3 mm SASE at ATF at BNL

Le=37cm | ,=3.3cm 1,=110 Amp| <5.3*10° m

lo, Lg 4p.:
_9 OI G 2
- S—IW(—3)

X

($]

Jx
In general saturation length is roughly 20Lc.
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