2.8 3-D FEL Theory and Optical Guiding

As we remember from the Egn 2.5-9 and Egn 2.5-10 we had Coupled Maxwell-
Vlasov eguations. For 1-D solution we had dropped N.? term. Now for 3-D solution we
will include N, ? term.

Now for simplicity let’s define a vector
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x° J2k k,r, and {, 2o %Jr ‘”IT( i Egn2.8-1
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Therefore the Fourier Laplace transform of the Maxwell-Vlasov equations would become

(W- q+R.%+U (%W a) E(x;Wa) = S(x:Wq) Eqn 2.8-2
Where
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U (XW,q) = 1 22 C) 19 Eqn 2.8-3
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Similar to what we have done in 1-D case we will assume fy as delta function but
with X dependence as follows:
fo=u(X)d(g - 9,)

So we can calculate U as

Ui =- &)

Z-U(x) Egn 2.8-4
W

Thus Egn 2.8-2 becomes

G- q+R.7- (ZVIF) U(R)(E (% W) = 5(% W.q) Eqn2.8-5
e u

To solve this equation we need find a Green’s function, which obeys the equation below:

- q+R,2- (ZVIF)B U(RG(X, KEW, Q) =d (X~ X9 Eqn 2.8-6
g i

Then the E would be
E (X W) = ¢d*XB(X, X¢W,6) S(X¢W,q) Eqn 2.8-7

2)° 5 and energy:L =w- q

WZ

Similar to Schrodinger equation with potential: y (x) = -



Difference from the Schrodinger equation:
1) L and U are complex
2) w occursinL and U

Thus we can expand the Green's function by the eigenfunctions. Now let’'s assume L |
are the eigenvalues of L , thus we can write the eigenfunction equation as
[L,+R.2+U(X;Wg)If (X)=0 Egn 2.8-8
We use atrial Green's function as

G(x%,X¢W0) = § fsvqu 2 ‘m;q’ Eqn 2.8-9

When we plug this in Eqn 2.8-6 we see that it is satisfies the equation. Therefore we
calculate the

~ o I, ()t L _ ]
E(xt,q)=-iq ;L—y (XA AHXY (X, D)S(X'; W, (9), q) Egn 2.8-10
"1 (ﬂn)wﬁwn(q)

Wherey (x,g)° f (%W, (q),q) and W,(q) isthe polein W plane.

The physical meaning of this result is as follows: for a frequency qzﬂ"’, the field
W

E(xt,q) iS @ sum over modes y (x,q), each mode exponentialy grows with a rate of

,.(W, (q)) , with the mode profile unchanged.



y .(x) : Mooresguided modes

Aswe in Figure 2.8-1 the modes starting from noise grow exponentially
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Figure 2.8-1 A schematic diagram of optical guiding. The vertical axis shows
spontaneous noise on the left. As the radiation progresses along the wiggler, one mode
(Moore’s mode) is growing, with gain compensating for diffraction losses.
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Figure 2.8-2 Increase in the effective Rayleigh range due to optical guiding

As shown in Figure 2.8-2 because of the optical guiding, the effective Rayleigh
range becomes very long.

y . (x) isfound by solving:
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[LH+NA2- %fu(x)]yn()—(,\/\/,q)zoand W- q' Ln :O Eqn 28‘11

Step function profile:

Now let’s assume u(X) is a step function which is defined as

ux)=1 |X<a

u(x)=0 |x>a

Egn 2.8-12

Figure 2.8-3 Step function profile

Therefore we can write the Eqn 2.8-11 as
(L +R,2+V(X)y (X) =0
where

L=W-q

and V(X) =- —(f/:lz)a u(x) © Vu(x)

Egn 2.8-13

Eqgn 2.8-14

Egn 2.8-15

Let's assume that Y (x) isinthe form of Y (x) =€™R(x), if we plug thisin Eqn 2.8-13 we

obtain

2

R+ LRHL +wu(x - IR =0
X X

which is called radial equation.
Solution to this equation is Bessel functions:

a7

Egn  2.8-16



R(x) =CJ_(c g) for x£ a

R(X) = DH @ (f ) for x2 a Eqn 2.8-17
a

where

c =aJ/L +V Re(c) >0 Eqn 2.8-18

¢ =adl Im(f) >0

The condition 1m(f ) >0 is the boundary condition so as x goes to infinity y should go to
zero.

Due is symmetry of J,., Re(x) can take either positive or negative value. Here we choose
Re(x)>0 arbitrarily

The continuity of R() at x=a requires
R(x)

¢ In' 0 ¢ Ho'(0) Eqn 2.8-19
J, (%) H.()

From the definitions of f and ¢ (Eqn 2.8-18) we obtain the following relations:

L=t cweq Eqn 2.8-20
a
Lev=S Eqn 2.8-21
a
Thereforey =C_. 1 Eqn 2.8-22
a a
but,, - r)°_ @) _ (@) Eqgn 2.8-23
W (L +0q)® f2. 2
(g"'Q)

From Eqn 2.8-23 and Egn 2.8-22 we can get
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Eqgn 2.8-24
(5 + a)°

Here we are introducing the scaled beam size a, which is defined as
a’o 2ra’

Eqgn 2.8-25
and also we define scaled tune as

po 4 - DW
2r  2rw,

Eqgn 2.8-26
Using these definitions, Egn 2.8-24 becomes

—_— Egn 2.8-27
(? +D)*
Eqgn 2.8-19and Eqgn 2.8-27 can be solved numerically for agiven a and D values.

1-D Limit:
The growth rate is

f 2 f 2
Wzg- q:2r(?+D)

Eqgn 2.8-28

Similar to what we have done in 1-D case we define

2
I Oﬂ:‘1—2+D Eqgn 2.8-29
2r a
If we plug thisin Egn 2.8-27 we get the equation for | as:
c 2
|°- (D+~—2)I2-1:0 Egn 2.8-30
a
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For D =0and as a goes to infinity we obtain the same values for | aswe got in 1-D case:

+ 2

| =1e 3 Eqgn2.8-31
Thus f goes to infinity from the definition and J _(c) goes to zero to satisfy the
boundary conditions at the infinity (Egn 2.8-19).

Therefore ¢ should be a parameter such that

Im(My,) =0 Eqn2.8-32

.

And for | =e3I

2.

f=3%3 Eqn 2.8-33
The Physical Meaning of a
From the definition of a*we can write
a?=2ra®=2r 2kKk,r,’ Eqn 2.8-34
This can be written as

32 214\/33" pro2 _Le
3o, 1, L

Thus we can conclude that

Eqgn 2.8-35

~, Rayleagh Range with _e- beam_ sze waist
a® -~ ;
power _gain_length

If a>>1 then L, >> L, which means diffraction loss is compensated by gain, system is

dominated by gain and we have 1-D limit: diffraction negligible.
But many modes are degenerate so there are many modes.

If a<<1 then L, << L, which means diffraction is significant, we have 3-D effects

therefore gain is less than 1-D case. However higher modes grow much slower, a single
mode dominates and size become constant (optical guiding)
If 2<a <6thengrowthrateissimilar to 1-D, single mode.
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