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2.8 3-D FEL Theory and Optical Guiding 

 As we remember from the Eqn 2.5-9 and Eqn 2.5-10 we had Coupled Maxwell-

Vlasov equations. For 1-D solution we had dropped 2
T∇  term. Now for 3-D solution we 

will include 2
T∇  term.  

Now for simplicity let’s define a vector  

⊥≡ rkkx ws
vv 2  and 
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Therefore the Fourier Laplace transform of the Maxwell-Vlasov equations would become 
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 Similar to what we have done in 1-D case we will assume f0 as delta function but 

with xvdependence as follows: 
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So we can calculate U as  
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Thus Eqn 2.8-2 becomes  
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To solve this equation we need find a Green’s function, which obeys the equation below: 
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Then the E would be  
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Similar to Schrodinger equation with potential: )(
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Difference from the Schrodinger equation:  

1) Λ and U are complex  

2) Ω  occurs in Λ and U 

Thus we can expand the Green’s function by the eigenfunctions. Now let’s assume nΛ  

are the eigenvalues of Λ, thus we can write the eigenfunction equation as  
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We use a trial Green’s function as  
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When we plug this in Eqn 2.8-6 we see that it is satisfies the equation. Therefore we 

calculate the  
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Where )),(;(),( qqxqx nnn Ω≡ vv φψ and )(qnΩ  is the pole in Ω  plane.  

The physical meaning of this result is as follows: for a frequency 
w
w

q
∆= , the field 

),;(~ qxE τv  is a sum over modes ),( qxn
vψ , each mode exponentially grows with a rate of 

))(( qI nm Ω , with the mode profile unchanged. 
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 )(xn
vψ  : Moore’s guided modes  

 

 As we in Figure 2.8-1 the modes starting from noise grow exponentially 

 

Figure 2.8-1 A schematic diagram of optical guiding. The vertical axis shows 

spontaneous noise on the left. As the radiation progresses along the wiggler, one mode 

(Moore’s  mode) is growing, with gain compensating for diffraction losses.  

 

 

Figure 2.8-2 Increase in the effective Rayleigh range due to optical guiding 

As shown in Figure 2.8-2 because of the optical guiding, the effective Rayleigh 

range becomes very long.  

 

)(xn
vψ  is found by solving: 
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Step function profile: 

Now let’s assume )(xu is a step function which is defined as  

=)(xu 1  ax <  

=)(xu 0  ax >         Eqn 2.8-12 

 

Figure 2.8-3 Step function profile 

Therefore we can write the Eqn 2.8-11 as 
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where 
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Let’s assume that )(xΨ  is in the form of )()( xRex imθ=Ψ , if we plug this in Eqn 2.8-13 we 

obtain  
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which is called radial equation.  

Solution to this equation is Bessel functions: 
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where 

Λ=
+Λ=

a

Va

φ
χ               

0)Im(
0)Re(

>
>

φ
χ        Eqn 2.8-18 

The condition 0)Im( >φ  is the boundary condition so as x goes to infinity ψ  should go to 

zero. 

Due is symmetry of mJ , Re(x) can take either positive or negative value. Here we choose 

Re(x)>0 arbitrarily  
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From the definitions of φ and χ  (Eqn 2.8-18) we obtain the following relations: 
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From Eqn 2.8-23 and Eqn 2.8-22 we can get  
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Here we are introducing the scaled beam size a~ , which is defined as  
22 2~ aa ρ≡           Eqn 2.8-25 

and also we define scaled tune as  
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Using these definitions, Eqn 2.8-24 becomes  
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Eqn 2.8-19and Eqn 2.8-27 can be solved numerically for a given a~ and ∆  values.  

 

1-D Limit: 

The growth rate is  
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Eqn 2.8-28 

Similar to what we have done in 1-D case we define  
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If we plug this in Eqn 2.8-27 we get the equation for λ as: 

01)~( 2
2

2
3 =−+∆− λχλ

a
        Eqn 2.8-30 



 50

For 0=∆ and as a~ goes to infinity we obtain the same values for λ as we got in 1-D case: 

i
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Thus φ goes to infinity from the definition and )(χmJ  goes to zero to satisfy the 

boundary conditions at the infinity (Eqn 2.8-19).  

Therefore χ  should be a parameter such that  
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The Physical Meaning of a~  

From the definition of 2~a we can write 
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This can be written as  
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Thus we can conclude that 
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If 1~ >>a  then GR LL >> which means diffraction loss is compensated by gain, system is 

dominated by gain and we have 1-D limit: diffraction negligible. 

But many modes are degenerate so there are many modes. 

If  1~ <<a  then GR LL <<  which means diffraction is significant, we have 3-D effects 

therefore gain is less than 1-D case. However higher modes grow much slower, a single 

mode dominates and size become constant (optical guiding) 

If 6~2 << a then growth rate is similar to 1-D, single mode.  

 


