2.9 The FEL Equations with Betatron Oscillation

In this section we will take betatron oscillation into account in the wiggler. We
will also look at the behavior of the electron beam when it is off-axis and find some

solutions to get maximum matching in the wiggler.

Natural focusing
From the Maxwell’s equations we have the relation between the components of

the magnetic field as

8, _ 1B, Eqn 2.9-1
z Ty
Thus p, = % Dy Eqn 2.9-2
z

Electron moves in the wiggler as in Figure 2.9-1 and if the electron is not centered
vertically, it will experience a Lorentz Magnetic force because of the magnetic field that
we obtained in Eqn 2.9-2.
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Figure 2.9-1 Off axis electron trgjectory in the wiggler, showing fields and forces. The
paper plane is the wiggle-plane, the offset isin a direction perpendicular to the paper.

In Figure 2.9-1, if the electron is at position 1 and py >0, thenps, >0.
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Therefore F, <0 which means electromagnetic force is towards the axis of the motion in

vertical direction.
o 1B, . _
If the electron is in position 2 and py >0, then DB, <0 because W termin Egn 2.9-2 is
z

negative. The Lorentz force would still be negative toward the axis.

If we have py <0 then we would have positive Lorentz force which is also towards

axis. Thus the Lorentz force always points to the y-axis and provide vertical focusing in
the wiggler.

Parabolic pole face — horizontal focusing

Figure 2.9-2 Parabolic pole face design. The beam direction is perpendicular to the plane

of the paper.

Assuming the z-axis is going into the page in Figure 2.9-2 if we had parabolic
faced poles in the wiggler we would have a variable strength magnetic field in y
direction. The more the electrons are off-axis, the more magnetic field strength they
would experience, and therefore they will experience more electromagnetic force toward
the center. This causes horizontal focusing.
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Figure 2.9-3 An electron trgjectory with betatron oscillation (long period) and wiggle
motion (short period).

Thus the trgjectory would be similar to what we see in Figure 2.9-3. When the electrons
are in position 1 they will experience more electromagnetic field compared to position 2,
therefore the curvature is larger in position 1.

More quantitative description of the betatron-motion has been done by
E.T Scharlemann [3].
In section 2.3 we had described the vector potential as
A, @A Xcosk,z Eqgn 2.9-3
B,=N" A, @ k,A,ysink,z
However this is only an approximation near the axis, not a solution of Maxwell’s

equations. A solution of Maxwell’ s equations from Scharlemann’s paper is as follows:
B

B, =- k—““{)?kxsh(kxx)sh(kyy)si nk,z+ Jk, ch(k x)ch(k,y) sink,z+ 2 ch(k X)sh(k y) cosk, 2}
y
Egn 2.9-4
2 2 _ 2
k,”+k,“ =k, Egn 2.9-5

S0 near axis y-component of the magnetic field can be expanded as
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B, =-B,, (1+% k,2x? +% k,?y?)sink,z Egn 2.9-6

What we are interested in is having equal focusing in horizontal and vertical directions.
Therefore we would like to have
1

Ktk =k Eqn 2.9-7

Results of Scharlemann’s analysisis as follows:

We have b- oscillation plus the wiggling motion as shown in Figure 2.9-4

Figure 2.9-4 Decomposition of the electron’s trajectory into wiggle motion and betatron

motion.

We define displacement from the axis of the wiggler x as the summation of betatron
displacement and wiggling displacement.
X=X, +X,

Egn 2.9-8
Y=Y,

We have the equation for betatron oscillation as from Scharlemann’s paper as.

Xo "= = Ko X Egn 2.9-9
Yy = kbyzyb
Where



K

K _

k =~ kg and k,, =———Kk Egn 2.9-10
bx /29 X by /29 y

For equal focusing we have ¢ =k = % k, SO
2

K
Ko = Koy © Ko =2—ng Egn 2.9-11
where K, is called natural focusing wavenumber.

The solutionto Eqn 2.9-9 is

Xy, = Xpo CO(Ky,Z+f )

Egn 2.9-12

Yp = Ypo COS(K,,Z +f y)
Thus
Xp "= = Ky Xy SIN(K,, 245 ) Eqgn 2.9-13
Yo =" Koo Yo COS(Ky, Z +f y)
x¢, Which was calculated in Eqn 2.3-4 becomes

K 1, 22,1 2 > Egn 2.9-14
X\g/:@' 5(1+Ekx Xy +§ky Yo )COSka q '

using Egn 2.9-6.

Longitudinal velocity:
The longitudinal velocity would be the summation of the betatron and the
wiggling velocities.

b, ={b*-b,” = /1- giz- b.? Eqgn 2.9-15

b.? =x€ + y¢ Eqn 2.9-16
If we average over the wiggler period we get
2 _ _ 1 K2 2 2 2
b, —Xg:z'*'yg:z'*X%z—E?'*kbn (X0 *+ Yo0') Eqn2.9-17
Therefore
K?2 K?2
b @_i_z_ik 2(x, .2 +Y 2):l—l+7—lk 2%, .2+ Y, %) Eqgn 2.9-18
H Zgz 2g2 2 bn b0 b0 Zgz 2 bn b0 b0
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The underlined term in the longitudinal velocity is reduction and spread. bH is constant

during the betatron oscillation.

Emittance

One of the most important parameters of an electron beam is its emittance. Before
we give the definition of emittance it would be beneficial to introduce the concept and the
notation.

In a bunch each electron has position and momentum (T, p) coordinates, where

re(xy,zand p° (p,, Py, Pp,). We use the convenient notation (x,x9 and (y,y9 for
the transverse vectors, where p, =mchgxtand p, =mcbgy(, b and g are the Lorentz

factors. Each electron is described by six dimensional phase space coordinates but for
convenience we use two-dimensional pairs as mentioned above. The collection of

electrons forms an ellipse in each phase space as shown in Figure 2.9-5.

r‘,“l r,*’ Beam {det{;r
; centroid K = 4]
/ i \ o

Figure 2.9-5 x - x( phase space ellipse of the beam, relating the shape to various

functions of the beam matrix elements.
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\/S 1, is the radius of the beam size, /s § is the divergence of thebeamand s ;, =s ,,is

the correlation between the two axes defined as in Figure 2.9-5.
Using the definition of an ellipse we obtain

S X - 25 ,xxC+s  xE = det(s) Egn 2.9-19

s &
where s © g“ < 12% is called the beam matrix and, and the ellipse’s area is given
21 29

by A =p./det(s) Egn 2.9-20

o . X0 .
When we represent a particle in the beam with a column vector X © g fé we can write
X
Egn 2.9-19 as

X's 'X =1 Eqn 2.9-21

The emittance is defined as the volume occupied by the particles in the electron beam in
six-dimensional phase-space. The emittance is thus a conserved quantity by Liouville's
theory. Under certain conditions the two-dimensional phase spaces (x,Py), (y,Py) are
conserved. At a constant energy (x,x’) and (y,y’) would be conserved. Thus the emittance
is related to the area of the ellipse. Conventionally this emittance (the geometrical
emittance) is defined as

e° ./det(s) Eqgn 2.9-22
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Beam M atching

Assuming
X=X, cos(k,z+f ) Egn 2.9-23
then x(=-k, x, sin(k,z+f )
Therefore

x€ +k,°x* = x,° = constant Eqn 2.9-24

-
N

k,e Oy

Figure 2.9-6 Phase space plot for a matched beam: It isacircle in thek, x- x(phase

space.

If this matching is not perfect then we would have atilt ellipse instead a circle above.
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Matched beam

Figure 2.9-7 Beam envelope of a matched beam.

Figure 2.9-8 Phase space plot for an unmatched beam. The arrows show the direction of
rotation of the beam ellipse.
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Unmatched beam

Figure 2.9-9 Beam envelope of an unmatched beam.
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if s,°=<x?>- <x>2 isthe rms of x then the for a matched beam the emittance would
be

e=k,s,s,=ks,’ Eqn 2.9-25

The rms transverse momentum is

S , =MCgs , = MCK, S , Egn 2.9-26

The phase space conservation requires that

S S, =MegK, S, = Invariant Eqgn 2.9-27
So the normalized emittance, which is a conserved quantity, is
e, =g,S, Eqn 2.9-28

In general we need extra focusing in the wiggler to get better beam matching. In this case
the equations modifies as follows.

Phase Equations:

y =k,z+kz- wt Eqgn 2.9-29
dy _ -1
& k, +k, - kaH Eqn 2.9-30
Where

1
bH t=(1- giz b.%) 2 @+ 2;2 +%bA2 Egn 2.9-31
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Thus we obtain the phase equation as

K2
dy 2

dz_w_ s

292 (9+y9)

Egn 2.9-32
d - k. dr., .
d_yz @k, "o [(—) +Kpy T 7]

bnz(x2 + y2)

0
When k, =k, (natural focusing) there is no longitudinal velocity modulation in betatron
oscillation because b is constant as we mentioned above. However when k, >k, th
(—) +k,,>.F? 1 constant

Eqgn 2.9-33
which causes longitudinal velocity modulation

taster

slower

Figure 2.9-10 The trgjectory of an electron in the wiggler plane under wiggling and

betatron motion, leading to a resultant modulation of the longitudinal velocity
The parallel velocity oscillates as shown in Figure 2.9-10
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We used the scaled 1. for 3-D theory

_&t
ST wW dt

. kbn
and we define k, = ”

W

if we get the phase equation

dq g'go 1 ) 252
s B - Z(p?+k 2’
m o 4(|O n X)

Physically :—é(pz +k_ “%?)is equivalent to energy spread in gain reduction.

(g isdefined as slow varying part of y )

Energy equation:

dg o
dz dz
ax i (kyz- Wt)

—=xt=x¢+x¢and E. ~¢€
™ ¢+x¢ y

x§ is off-resonance (slow)
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Figure 2.9-11 Comparison of the divergence angles of the wiggle and betatron motions.

(xg )max =k, X, , @K,S , Egn 2.9-35
where s , isthe beam size.
(x¢),., = K Eqn 2.9-36
g
: K
For natural focusing Kk, = P K, Eqgn 2.9-37
g
%) 1 s
@ ==k,s,=p— Egn 2.9-38
(X\gv:)max wS x =P I q

Beam size s, is of order of 0.3 mm or less however | , is of order of 10mm or more.

Therefore ‘xg‘ <<|x¢|usualy holds and we get the same 1-D equation for energy

exchange
dg 1 913,(b) - J,(b)] +cc. and € . D2 (ke +ce)
iz 2 °° ! - dt o -
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M axwell Equation
In section 2.5 we derived the results of the Maxwell equations. In this case the derivation

exactly same and we use ‘xg‘ <<|x¢| condition to calculate cosk,ze“* """ Following

exact same derivation in Fluid Model section we obtain Eqn 2.5-9
.

—+

it 99 2kk,

Transverse Equation of Motion

R,2)E =2 ¢Fdg
%

2 2
%+kb2x:0,%+kb2y:0

2 2 k
d Z‘+k2x:o,OI Y +k?y =0 where k© > Eqn 2.9-39
it it K
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2.10 Universal Scaling

The coupled Maxwell-Vlasov equations in 3-D can be reduced to the following:
(- IW+ig- iK,)E = 2 Xig o§i2pF + E¢t =0)
Y%

(-iW+ig)F + p%ﬁ(- oz I - D. T

Egn 2.10-1

TOE+F(t =0)
P g, g

After some calculation we obtain the dispersion relation for the electric field.

> [(X *)Sm( kS)‘r ( cog( 2ks)]
(R,2 + ME(R) = (2r ) fidhg (517 pu(p + k) oadse g k T
’ E(Xcosks+£sin ks)
Egn 2.10-2
k k -
where k==, kn:ﬁ,X:,IZKSkWF,m:W- g=w- Y%
WS
2
a=me 00700 T Koy ey pegey,
W, g9, 8 k

(9-90)*
e

h(g) = \/%S

g

u(p® +k*x%) = 2o Q(k*a* - k?x? - p?)is uniform distribution (step fn),

=,/2kk, R,isthe scaled beam size and R, is beam size.

The rms value of the beam is s, \/_ R,. For a matched beam s { =k,s,, thus the

. . 1
emittanceis e, =k, s ,” = Ekb R’

Eqgn 2.10-2 can be solved using a trial function
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e ® rf£a
E(X) = Egn 2.10-3
CHP(rym) r3a Imu>0

The continuity of logarithmic derivative at r = a leadsto

\/—HSﬁl)(a\/f_n)

Eqgn 2.10-4
H " (ay/m)
Substituting the trial function into Eqn 2.10-2 gives us

0 -ig[m+ 2 Ws ]-2%32 1- e—h+ 1- e—h,

mei(l- €°)- [1- (1- c)e°] = (2r )*a® ds——e o -
( )[()]()_¥cosks [h+ h_]
Egn 2.10-5
where h, = %(H cosks) +|Zk2azs Eqn 2.10-6

Thus we have two equations (Egn 2.10-4 and Egn 2.10-5) and two unknown (mand c)
which we can use simulations to solve.
The gain length can then be found using
1
2k, Lo

In order to increase the speed of the simulations a scaling method is used by changing the

Im(m) = Egn 2.10-7

variables as follows:
We define a =,/2r a=/2r \/2kk, R, and change the integration variable 2rsb s
Then the Egn 2.10-4 becomes

Héﬁ”(af )
\/; Eqgn 2.10-8
Ho" (@ \/7 )

and Egn 2.10-5 becomes
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0 g MW g Sg 2.2 _h _h
m ~ . . ~2 1 S gt g 1-er 1-et
a2(1_ e C) _ [1_ (1_ C)e C] - a.2 OdS k e 2r  2rwg 2rgg [ _ ]

2r ¥ COS—S h, h.
2r
_C ., k i, Ko~
where h, = —(1¥ cos—s) + —(—)“a“s Egn 2.10-9
-2 2r 4°2r
- S, k -
Thus Imm _ 1 _ F(a,—%,> W WS) Eqgn 2.10-10
r 2K, L r gof k,r wr
Thus Imr(rr) is afunction of 4 scaled parameters.
The physical meaning of a2 =2ra? =2r 2k k R’ = 24/3 LTD Eqn 2.10-11

LG

where L, = (Rayleigh range with waist of electron beam size)

_4ps,’

I S
More practical form of scaling function was introduced by Yu, Krinsky and Gluckstern
[4] asfollows:

We change the variables as
D=2ra and sa b s therefore the Eqn 2.10-9 becomes scaled with D instead of 2r as..

0 R iS[EJ,M]_ 2(379)232 _ahs _ ah
MIKE (1) [1- (1- c)ec] =87 ggls— S e o v ow Tl€T 1€
D k h h
— ¥ C0S—S ¥ :
D D
C . k I ¢
where h, = E(:H COSB S) + |3(B)kse.s Egn 2.10-12
The continuity equation (Eqn 2.10-8) becomes
ke m,;
1) s
12-°>- )2
HE" (@25 1))
1 sl
(12 kke My D - Egn 2.10-13
50 HO @My
D 0 k D
D

Therefore the gain function is
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Imm) _ 1 - Gke S, Kk, w-w,

= € , : ) Egn 2.10-14
D 2k,L.D 9,0 'k,D’" w.D

D can be calculated from D? = (2r )%a® = Zoiz%l—os K?[JJ]? Eqn 2.10-15
pm W gO

2Zel, K*

2[J]
pme® g, 1+K2) .

Thus D =(
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