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2 FEL THEORY 

 

 

 

2.1 Introduction to the Theory of the FEL 

 
Figure 2.1-1 Simplified diagram showing the electron beam motion in the wiggler and the 

radiation process 

 

Electron beam undergoes axial bunching in the wiggler due to energy spread 

combined with the radiation field. Slightly higher and lower energetic electrons covers 

slightly shorter and longer distance in the wiggler so head and tail catch up. Because of 

this bunching the coherent radiation is produced.  

By the time the first photon covers ct distance electron can cover vt distance.  As shown 

in Figure 2.1-1 vt is the length of the wiggler. 

wwNvt λ=           Eqn 2.1-1 

where Nw is the number of wiggle in the wiggler and λw is wiggler period. The path 

difference between electrons and first photon emitted must be equal to Nwλs where λs is 

the radiation wavelength. 

Thus 

swNtvc λ=− )(          Eqn 2.1-2 
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If we substitute Nw with vt/λw we get 

β
βλλ )1( −= ws          Eqn 2.1-3 

which is approximately  

22γ
λλ w

s =           Eqn 2.1-4 

Since the actual velocity in z direction is less than the electron velocity this expression 

changes as follows  
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λλ +=         Eqn 2.1-5 

We will come to this a bit later.  

 

 

There are basically two kinds of wigglers 

1) Helical 

2) Planar 

2.2 The FEL Equations with a Helical Wiggler in a Small Signal 
Approximation 

 
In this section we will introduce the FEL equations of motion with a helical 

wiggler, which is a simpler case. We will solve the equations using a small signal 

approximation. 

A helical wiggler is characterized by a vector potential of a helical form: 

2
1

).ˆ( cceeAA zik
ww

w += −

r
       Eqn 2.2-1  

where 

0ˆˆ,1ˆˆ,
2

ˆˆˆ ==±= ±±−+± eeeeyixe               Eqn 2.2-2 

As will be shown below, the electrons will follow helical path as depicted in Figure 2.2-1.  
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Figure 2.2-1 The electron trajectory in a helical wiggler 

Eqn 2.2-1 can be written as: 

)]sin(ˆ)cos(ˆ[ zkyzkxAA wwww +=
v

      Eqn 2.2-3  

The magnetic field is derived from the vector potential: 

)]sin(ˆ)cos(ˆ[ zkyzkxAkAB wwwwww +−=×∇=
vv

     Eqn 2.2-4 

The Mechanical momentum Π can be written in terms of the canonical momentum P. 

AeP
vvv

−=Π           Eqn 2.2-5 

The canonical momentum is conserved before and after the field. So let’s consider 

only the perpendicular component of the equation. Since initially there is no momentum 

in the perpendicular direction ⊥P
v

 will be zero. 

⊥⊥⊥ −=Π AeP
vvv

         Eqn 2.2-6  

Therefore  

⊥⊥ −=Π Ae
vv

          Eqn 2.2-7 

We can write the momentum in terms of the velocity. 

⊥⊥ −= Aevm
vvγ           Eqn 2.2-8  

)]sin(ˆ)cos(ˆ[ zkyzkx
m
eA

m
A

ev ww
ww +−=−=⊥ γγ

v
v      Eqn 2.2-9 

)]sin(ˆ)cos(ˆ[ zkyzkxK
ww +−=⊥ γ

β
v

       Eqn 2.2-10 

where K, which is called the wiggler magnetic strength parameter, is defined by 
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λ===        Eqn 2.2-11 

In practical units wwBK λ
π 6

8

10511.0.2
103

×
×≈   

)()(94.0 TeslaBcmK wwλ≈     Which is usually of the order of 1 

 

Energy Exchange 

We want to use the wiggler and electrons to impart energy to an electromagnetic 

field. So we have to introduce a radiation field and study the energy exchange between 

the electrons and this field. As we understand from Eqn 2.2-10, the electrons move in a 

helical orbit. This is not surprising because the vector potential is helical. We expect that 

the electromagnetic radiation emitted by the electrons will also have a helical form. Thus 

let us define: 

..ˆ),(
2

1 )( cceetzEE twzki ss += +
−v

      Eqn 2.2-12  

where ks is the wave number and ws is the frequency of the wave according to the plane 

wave solution. The relation between the ks and ws is as follows: 

c
w

k s
s =           Eqn 2.2-13 

In anticipation of the evolution of the electric field intensity along the wiggler, we 

introduced a time-dependence in the amplitude. Normally there is no energy exchange 

between the EM field and electron beam propagating in the same direction because their 

scalar product would be zero (they are perpendicular to each other). Since there is a 

transverse component of the electron’s velocity in the wiggler there will be interaction 

between the EM field and the electron beam.  

Energy exchange is   

⊥== rdEedmcdW vv
.2 γ        Eqn 2.2-14  

If we take the time derivative of the equation Eqn 2.2-14 we get 
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Eve
dt
dmc

vv
⊥=γ2          Eqn 2.2-15 

We can change the independent variable from time to position: 

Ee
dz
dmc

vv
⊥= βγ2            Eqn 2.2-16 

Let us substitute the form of E from Eqn 2.2-12 

( )ccetzEK
dz
dmc zktwzki wss .),(

2
)(2 +−= +−

γ
γ                   Eqn 2.2-17 

Let us introduce a phase variable θ,  

.).),((
2 2 ccetzE
mc
eK

dz
d i +−= θ

γ
γ        Eqn 2.2-18  

where 

twzkk sws −−= )(θ         Eqn 2.2-19  

Now let’s assume that the amplitude of the electromagnetic field has the form: 

( ) )
2

(

0,
πφ −

≡
si

ss eAwtzE          Eqn 2.2-20 

where ws is the frequency and As0 is a coefficient and φs is another phase factor. The 

meaning of this definition will become clearer when we do the calculations for a bunch of 

electrons. The phase φs will provide an individual initial phase for each electron. To work 

with a dimensionless variable, we define the coefficient as as:     

s
s a

mc
eA ≡0                      Eqn 2.2-21         

If we substitute these in the Eqn 2.2-18, after a simple algebra we get the important 

energy equation: 

)sin( s
ss Kak

dz
d φθ

γ
γ +−=         Eqn 2.2-22 

 

Phase Equation 

Using the definition of the phase variable (Eqn 2.2-19) we can take the derivative 

with respect to z and we get 
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dt
dz

wkk
dz
d

sws
1−+=θ

        Eqn 2.2-23 

which can be written as  

β
θ 1

sws kkk
dz
d −+=         Eqn 2.2-24 

The parallel velocity can be derived using Eqn 2.2-10. 

2
1

2

2

2
22 )11(

γγ
βββ K−−=−= ⊥        Eqn 2.2-25 

Since 2

21
γ

K+  term is small compared to 1, we can make a Taylor expansion and get 

2

2

2
1

1
1

γβ
K++≅          Eqn 2.2-26 

When we plug this in  Eqn 2.2-24 we get the other important equation, the phase 

equation: 

2

2

2
1

γ
θ K

kk
dz
d

sw
+−≅         Eqn 2.2-27 

   

 Resonant Condition    

For a certain value of the electron’s energy, the phase does not change along the 

wiggler. This condition is called the resonant condition, and we denote the resonant 

energy as 0γγ= . For this value of energy, the phase evolution of Eqn 2.2-27 becomes 

zero. 

0=
dz
dθ
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Therefore, the condition for resonance becomes 2
0

2

2
1

γ
Kkk sw

+=    Eqn 2.2-28 

So we get the central wavelength of the spontaneous radiation.      

)1(
2

2
2

0

Kw
s +=

γ
λλ          Eqn 2.2-29 

This is equivalent to the statement that electrons slip one λs behind the EM wave in one 

wiggler period λw.  

In the next stage we consider electrons whose energy is near the resonant energy, 

but not quite. 

When 0γγ≠ , but 0γγ− <<γ0 

0
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γ
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γ
θ −≅−=+−= wwsw kk

K
kk

dz
d     Eqn 2.2-30 

Therefore we can write the energy and phase equations of motion for 0γγ≅  

)sin(
0

s
ss Kak

dz
d φθ

γ
γ +−=         Eqn 2.2-31 

0

02
γ

γγθ −= wk
dz
d         Eqn 2.2-32 

  

Small Gain Approximation 

Our next task is to solve this set of two equations. Let’s consider the case where as 

is essentially constant and φs is independent of z. 

Let’s define 

sφθφ +≡           Eqn 2.2-33 

Also, let us use a dimensionless position variable,  

zkw≡τ           Eqn 2.2-34 

and a variable η, which we call the detuning variable: 
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0

02
γ

γγη −≡ :          Eqn 2.2-35 

Next, we define an angular frequency sΩ , which we will identify later as the synchrotron 

rotation frequency: 

2
0

2 2
γ

Ka
k
k s

w

s
s ≡Ω          Eqn 2.2-36  

If we plug these definitions into the equations (Eqn 2.2-31, Eqn 2.2-32) we get the 

celebrated ‘FEL pendulum equations’:  

η
τ
φ =

d
d           Eqn 2.2-37 

φ
τ
η sin2

sd
d Ω−=         Eqn 2.2-38  

φ is analogous to the angle variable of a mechanical pendulum. If the input signal as is 

very small then sΩ  is also very small. In this case sΩ  becomes oscillation frequency in 

the “ponderomotive potential”. This oscillation is called the synchrotron oscillation for 

historical reasons (it describes the longitudinal motion of particles in a synchrotron). 

Thus sΩ  is the synchrotron angular frequency. 

The initial energy detuning is 0η  

Let’s define 

τη0≡x   , 
0η

ηε ≡ , 2
0

2

η
µ sΩ≡        Eqn 2.2-39 

ε is a dimensionless relative energy variable and x is the dimensionless position along the 

wiggler scaled by the initial detuning.  

By plugging these definitions into pendulum equations (Eqn 2.2-37 and Eqn 2.2-38) we 

can obtain an even simpler form of the equations: 

εφ=
dx
d

          Eqn 2.2-40 

φµε
sin=

dx
d

          Eqn 2.2-41 

We define the small signal regime by µ<<1 
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In this regime we may apply a perturbation method and introduce iterations to 

solve the equations. Having the solution for one electron (defined by the set of initial 

conditions) we average over the phase φ  of the individual electrons, and obtain the 

change in energy of the ensemble.  

We will skip the details of the derivation here and present the result. 

<ε>=<ε0>+µ2x3f(x )        Eqn 2.2-42 

where 3

sin
2
1

1cos
)(

x

xxx
xf

+−
=        Eqn 2.2-43 

By using the definition of the energy variable ε from Eqn 2.2-39 we can write 

<
γ
γ∆

>=
2
1

< η∆ >=
2
0η

<
0η
η∆

 >       Eqn 2.2-44 

and also by using Eqn 2.2-42 we can obtain the relation for energy loss. 

<
γ
γ∆

>=
2
0η

< 0εε − >= )(
2

320 xfxµη
                             Eqn 2.2-45 

We can use the definition of µ and x (Eqn 2.2-39) and get the following simplified 

equation.   

<
γ
γ∆

> )(
2
1 34 xfs τΩ=         Eqn 2.2-46 

        

where 

2
0

2 2
γ

Ka
k
k s

w

s
s =Ω , zzk

w
w λ

πτ 2==    

which are independent of the initial detuning 
0

0
0 2

γ
γγη −=    

 Naturally, when we use x it is at the end of the wiggler, that is at τ=kWLW=2πNW.  

Thus x is proportional only to the initial detuning. It happens to be the only variable 

related to the initial detuning, 
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≈−==
0

0
0 4

γ
γγπτη wNx detuning       Eqn 2.2-47 

In Figure 2.2-2 below we plot the gain function f(x) as a function of x. This plot has a 

significant importance in FEL process, because depending on the value of the detuning 

we can have positive or negative, minimum or maximum gain values. If we choose a 

detuning which yields a positive gain value then we will have enhancement in the 

radiation emitted by the FEL process. That means that electrons transfer their energy to 

the radiation field. However if we choose a detuning which gives a negative gain value 

then the electrons will gain energy from the radiation in the wiggler, which causes 

acceleration of electrons. This process is laser acceleration, in this case an Inverse Free 

Electron Laser (IFEL) process. 

 

Figure 2.2-2 The gain function as a function of the normalized x variable, which is 

proportional to the detuning (see text)

 

 

Small Gain Formula 

Now that we have the energy transfer solved, we will estimate the small gain 

formula. Let’s assume that the optical beam size is equal to electron beam size with the 

area A. We define the electron number density as no so that the current would be given by 

I0=ecn0A and let’s take the electron bunch pulse length as t. The radiation field is 

amplified only where it overlaps with the electron bunch, thus t is also the length of the 

radiation pulse. 

The radiation field energy is given by  



 13

At
Z
E

Energy
0

2

=          Eqn 2.2-48 

The gain is defined as the ratio of energy lost in the electron bunch to the energy of the 

electric field in the wiggler. So the gain is  

At
Z
E

e
tI

mc
G

0

2

0
0

2

0

γ
γ
γ∆

=         Eqn 2.2-49 

where 
e
tI 0  is just the number of the electrons in the bunch.  

By using Eqn 2.2-46 we get  

)(
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24

xf
A
I

Ee

Zmc
G s τγΩ−=        Eqn 2.2-50 

and also using the definitions of Ω s and τ (Eqn 2.2-36 and   Eqn 2.2-20) we can obtain 

the expression for gain as 
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s

τ
γ

γ−=       Eqn 2.2-51 

Remembering 
mc

eA
a s

s
0=  we can also write the gain as 

)(
2 3

3
0

2

2
0
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0 xf

mck
KneZ

G
w

τ
γ

−=         Eqn 2.2-52 

In order to simplify the expression we can express the gain in terms of the Pierce 

parameter ρ, which is defined as 

3
0

2

2
0

2
03

2
)2(

γ
ρ

wmck
KneZ=          Eqn 2.2-53 

Thus the gain in terms of the Pierce parameter is 

)()4(4 3 xfNG wπρ−=         Eqn 2.2-54 
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 Hamiltonian and Phase space 

 We had obtained the pendulum equations before in Eqn 2.2-37 and Eqn 2.2-38. 

Now we will express the same equation in terms of the Hamilton’s Canonical Equations. 

We will start with a trial Hamiltonian as: 

φη cos
2
1 22

sH Ω−=         Eqn 2.2-55 

By applying the Hamilton’s Canonical Equations to this expression we get 

η
∂η
∂φ

τ
φ ==′= H

d
d

        Eqn 2.2-56 

 

and  φ
∂φ
∂η

τ
η sin2

s
H

d
d Ω−=−=′=        Eqn 2.2-57 

Which reproduces Eqn 2.2-37 and Eqn 2.2-38 (the pendulum equations). Therefore η and 

φ are canonical conjugate variables in Hamilton equations. (Similar to position and 

momentum in classical mechanics). 

Since our trial Hamiltonian fits these pendulum equations perfectly, it must be a 

conserved quantity. Using this conserved Hamiltonian we can plot the phase space of the 

electron trajectories. 

 

Figure 2.2-3 Electron trajectories in φ-φ’ phase space, showing bounded and unbounded 

trajectories and the separatrix.  

 In Figure 2.2-3 above we plot the derivative of the phase versus the phase itself 

for different values of Hamiltonian H. As shown in Figure 2.2-3 some of the trajectories 

are unbounded but some are bounded as closed loops. 
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For a certain value of Hamiltonian the trajectory intersects the phase axis at 

.....5,3, πππ ±±± . This special trajectory is called the ‘separatrix’, and it separates the 

bounded trajectories (loops) from the unbounded ones.      

 The separatrix height is sΩ±2  

The width of the separatrix is 2π,which can easily be seen on the plot. 

For small gain and small signal regime 0η >> sΩ .  The energy modulation η  varies 

with zkx w00 ητη == . 

Assume we have electrons with a given energy spread as shown in Figure 2.2-4. 

 

Figure 2.2-4 Electron distribution in phase-energy space, before (left) and after (right 

energy modulation by the radiation 

 

Figure 2.2-5 The process of microbunching in a dispersive medium. The arrows show 

direction of electron motion due to the modulation. 

The interaction with the radiation modulates the energy of the electron beam as 

shown in Figure 2.2-4. In the wiggler, the more energetic electrons bend less; therefore 

cover a shorter distance than the less energetic electrons. This phenomenon causes the 

more energetic electrons to catch up the less energetic electrons and that is called bunch 

compression (specifically, magnetic bunch compression), leading to micro bunching. The 

process is shown in Figure 2.2-6. Since the length of these micro-bunches is shorter than 
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the wavelength, these bunched electrons radiate coherently (in phase with the modulating 

radiation). The strength of the radiation grows and we have gain. As radiation grows 

sΩ also grows, therefore the separatrix height increases and radiation goes into the high 

gain regime which will be discussed later. 

 

Figure 2.2-6 The microbunched beam  


