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1. INTRODUCTION 

 We investigate the behavior of the efficiency, accelerating gradient, energy 
spread, and other measures of performance of a cylindrical multimode monolayer 
dielectric wake field accelerator (MM- DWA) as a function of the bunch dimensions (rms-
length, longitudinal shape, etc), driving train profile, geometrical dimensions of a 
structure (inner, and outer radii), and dielectric constant. The energy balance equation is 
derived, and on its basis a time efficient, semi- analytical numerical computational 
algorithm is developed to predict the accelerating gradient, efficiency, and energy spread 
of the MM- DWA. Having analyzed over 2,000 cases we reach conclusions about the 
quantitative behavior of the MM- DWA performance, affected by changes in the structure 
and/or bunch dimensions, as well as the dielectric material.  

The studies take the example of a cylindrically symmetric structure in which a 
vacuum channel is made for the electrons to pass along the axis through an annular layer 
of dielectric material. The dielectric is enclosed by a metal casing (Fig.1) A train of 
colinearly- moving bunches of charge (referred to commonly as a drive train, or drive 
bunches) is used to excite the structure. A single test bunch that is to be accelerated 
follows this train. The boundary conditions at the structure ends are assumed to have 
negligible effect upon the longitudinally- infinite solution, in which the wake field is 
described as the superposition of many TM0m modes [1][2][3] each having phase velocity 
equal to that of the electron bunches. 

 

 
 

FIG. 1 Example of a DWA structure 
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Every drive bunch has sufficient initial energy for it to remain synchronous with the wake 
field for an appreciable amount of time, and, should this bunch fall out of synchronism, it 
would be replaced by a new highly energetic bunch. We neglect any transverse features 
of a bunch since it will be demonstrated that for tightly focused beams the transverse 
distribution has little effect upon the excited wake field. We assume that focusing is 
provided by external elements of whatever design is found to be appropriate. We also do 
not address any issues concerning the electric breakdown threshold on the surface of the 
dielectric. 

  

2. THEORETICAL FORMULATION 

 

For a train of axially symmetric bunches with the transverse half-width 
5/Awtrans ≤ , centered at r = 0  the charge distribution is represented as: 
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with ∫ = 1)( ξξ dFi , and 0)( →ξiF , when ∞→ξ   
where the function Fi describes the longitudinal shape of the ith bunch, whose full charge 
is: 
 

Qi = qi ⋅Q0             (2.1) 
 

with Q0 being some reference charge; δ(r′) is the usual Dirac delta-function; vtzz −= ''0 , 
r′, z′  are the radial and longitudinal coordinates, t  is time, and v = cβ is the bunch 
velocity. Note that qi ≥ 0 always. 
 Searching the fields in the form of TM0m eigenmode decomposition [1][2][3]: 
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where vtzz −= ''0 , vtzz −=0 , αm is the normalization constant, θhv is the Heaviside 
function,   ωm is the mth eigen- frequency [see ref.1],   and  fm(r) is the mth eigen- function 
[1].  In the vacuum channel, one obtains eigen- functions: 
 

)()( 10 rkIrf mm =  
 

Then, the normalization constant is: 
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1/1 2 −⋅= βεγ k , and )()()()(),,( 01101 kRNkrJkrNkRJrRkP −= . 
Jm, Nm are the Bessel, and Neumann functions (Bessel equation functions of the 1st and 
2nd kinds) respectively. Im is the modified Bessel function. 
 If the transverse features need to be included one makes the following alterations: 
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where )'(rB is the transverse distribution function such that 1'')'( =∫ drrrB . 

For the transverse Gaussian distribution )
2

'exp(1)'( 2

2

2
transtrans w

r
w

rB
⋅

−=  with 

5/Awtrans ≤ one discovers that the correction to the accelerating gradient is less than or 
about 0.01 %, and thus the transverse features for tightly focused bunches can be indeed 
neglected. 
 The power radiated by a train of e-bunches (computed through the modified 
Poynting vector [2]) is: 

∑=
m

mPP   
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point behind the ith bunch all corresponding coefficients im
C

,Γ , and im
S

,Γ become 
independent on z0. 
 The  Γ coefficients determine the structure of the created wake field, and the 
details of interaction. In our numerical studies we are interested in the wake field excited 
by bunches of Gaussian shape (with the different tail/head ratio), as well as the triangular 
(with the different tail/head ratio), and rectangular shape. To provide consistent 
comparison between different longitudinal shapes we keep the rms-length 
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the same for every distribution. 
  With the Г coefficients computed one obtains that at any point behind the very 
last bunch: 

( ) ( ) =+
22 m

s
m
c II +−ΓΓ+ΓΓ⋅∑∑ )cos()( ,,,, m

j
m
i

jm
S

im
S

jm
C

im
C

i j
jiqq θθ  

)sin()( ,,,, m
j

m
i

jm
C

im
S

jm
S

im
C

i j
jiqq θθ −ΓΓ−ΓΓ⋅+∑∑  

which clearly demonstrates that the emitted radiation is amplified in a coherent fashion. 
(The second term of the series vanishes if all bunches have the same longitudinal shape.) 
 We proceed further by noting that one puts into the structure N driving bunches, 
having the same shape but with different charges, followed by one test bunch (denoted by  
N+1) whose charge and longitudinal dimensions are different. Then, we have: 
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where the subindex T indicates that the quantity is computed for the test bunch [for fm0 
see Eq.(2.3)], and rewrite the radiated power in the form: 
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is the power radiated by the first N bunches (the power pumped into the wake field by the 
driving train.) The two last terms, when taken with the minus sign, give the amount of 
power that goes for the test bunch acceleration, i.e.: 
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 Recalling that one places the driving bunches equidistantly with spacing equal to 
the wake field period, L, and the test bunch follows behind the driving train at the 
distance L/2, i.e.: 
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we compute the enhancement factor (showing by how much the power radiated from N 
driving bunches exceeds the power radiated by one bunch with q1 = 1): 
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The structural ratio (the value of  qT when PT is maximum) is: 
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The efficiency of energy transfer from the N- bunch train to a test bunch of charge 

QT = Q0 ⋅⋅⋅⋅ qT will be: 
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The average accelerating gradienta acting on the test bunch: 
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Note that the acceleration gradient achieves its maximum at QT → 0, while the efficiency 
achieves its maximum at QT = Q0 ⋅χρ . When the efficiency is maximum the accelerating 
gradient is only ET /2. 
 After traveling the distance S the energy of an electron from a test bunch will be 

0WeSEW zT += , where W0 is the initial energy, assumed to be the same for every test 
electron; Ez is the field (unchanging in the synchronous approximation) accelerating the 
given electron [see Eq.(2.2)], and e =1.6⋅10-19C (electron charge). Averaging over the test 
bunch longitudinal distribution one has ACCz EE = , and consequently 0WeSEW ACCT += . 

The energy spread is then: 
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account that usually the energy gained after acceleration is much large than the initial 
one, i.e. EACC >> W0 /eS. Also the test bunch charge is relatively small, i.e. 2χρ >> qT, and 
consequently EACC → ET, and computing 2

zE one can neglect all sum members of the 
order of  qT and higher.  

Under these condition the energy spread of a test bunch becomes: 
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where χρ is given by Eq.(2.6), and 2
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a Eq.(2.9) allows one to calculate the accelerating gradient about 200 times faster than by the direct 
integration 
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where FT (z), and BT (r) are the longitudinal and transverse test bunch distributions 

respectively; 
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 At the location of a test/drive bunch the longitudinal electric field vs. z resembles 
a hump (see Fig.2) with the foot width 
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The ratio betweenb σwake and the test bunch rms- length σTB will determine whether the 
energy spread is sensitive to changes in a given DWA parameter, or not. 
 Since all coefficients Ωm , ΩmT , Λm , Dm depend on the bunch shape one can try to 
use different bunch longitudinal distributions to improve the efficiency, accelerating 
gradient, and/or energy spread. The efficiency, accelerating gradient, and energy spread 
depend also on the set of qi, adjustable by choosing a particular profile for the driving 
bunch train. This provides an additional degree of freedom for improvements.  
 
 

 
FIG.2 The longitudinal electric field vs. Z (at the axis of structure) 

 
  
 
 
                                                 

b σwake  enters also into the equation on synchronism between drive bunches and wake field and is being 
referred to  later as the coherent length  
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3.  NUMERICAL STUDIES 
 
 

A. Performance vs. bunch shape, and drive train profile 
 

Using the drive charge QD as a source of the wake fields in a MM- DWA one asks 
what its longitudinal distribution shall be to provide the best efficiency and accelerating 
gradient acting on a collinearly- located test bunch. Since there are limitations on the 
maximum bunch charge at a given energy due to space charge effects, one cannot put all 
drive charge into a single bunch, and the need for considering a multi-bunch drive train 
appears. The charge Qi of the ith bunch, thus, can be anywhere within the range from 0 to 
Qmax, where Qmax is specified by the space charge effects, arising due to the transverse 
fields. However, space charge effects themselves do not specify the particular value of 
every Qi, nor put any upper limit on the number of bunches N in a multi- bunch drive 
train  (1 Ni ≤≤ , and the minimum of N will be defined, of course, as QD /Qmax). 
Studying the details of the interaction between a multi- bunch drive train and pursuing the 
achievement of maximum efficiency and accelerating gradient, one can find the set of 
values opt

ii QQ = , and some particular value of N such that the efficiency, and gradient 
are maximized. Note then that all opt

iQ are defined by the longitudinal forces. To find 
opt
iQ  values and the corresponding N one solves the problem in which one sorts out 

among many possible sets of Qi, with Ni ≤≤1 , where N can be, in principle, infinitely 

large, and the constraint that ∑
=

=
N

i
Di QQ

1
 is superimposed (total drive charge is 

preserved). If the solution is such that maxQQopt
i ≤ for every i, and N > QD /Qmax, it should 

be used to profile the driving train to optimize the MM- DWA. 

 After the particular driving train profile is found to provide the best performance, 
one can proceed further by asking what the distribution of a charge within every single 
drive bunch should be to, again, maximize the efficiency, and gradient. We can reshape 
the bunch (we used Gaussian (G), Triangular (∆), and Rectangular(R) shapes), and 
changed the ratioc of head/tail lengths σ1 /σ2), and changed the rms-length (σL for a drive 
bunch, and/or σTB  for a test bunch), while preserving the bunch charge, since it is already 
fixed by virtue of the previous problem. 
 In the supporting examples we take R = 19.31 mm, and ε = 9.65 unless otherwise 
specified. The accelerating gradient acting on a test bunch or energy losses experienced 
by a drive bunch will be given per 1 nC of the drive bunch, e.g. MV/m⋅nC. The radiated 
power will also be given per 1 nC of a drive bunch (e.g. MW/nC2), unless otherwise 
specified. 
 Our conclusions are drawn under the condition σTB ≤ σwake /4, since the energy 
spread is tolerable when this condition is satisfied, and are summarized below: 
 

                                                 

c For any rectangular bunch (in the formal notation) one always has σ2  =0, and thus,  σ1 /σ2 = ∞  and is 
unchanged. 
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FIG.3. (a) Efficiency vs. the ratio σσσσTB  /σσσσwake (test rms-length/ coherent length). (b) 
Accelerating gradient [MV/m⋅⋅⋅⋅nC of the driving bunch] vs. σσσσTB  /σσσσwake. (c) Energy 
spread vs. σσσσTB  /σσσσwake. Inner radius A = 1.0 mm, drive profile = sin- like, 7.1ˆ =α , N= 
20 bunches in the train, drive bunch rms- width σσσσL = 1.6 psec, Gaussian, head/tail 
ratio σσσσ1  /σσσσ2 = 1:8, wake period L = 0.21590 m, coherent length σσσσwake = 2.1 psec. (In 
(c) the spread is given for a Gaussian test bunch with σσσσ1  /σσσσ2 =1). 
 

(3.1.1)  ηMAX and ET strongly depend on the rms-length σTB of a test bunch. The 
changes introduced by variation in the test bunch shape and changes in σ1 /σ2 are almost 
negligible: ∆η/ηMAX ≤ ±0.023,  ∆ET /ET ≤ ±0.008. For instance ηMAX ≈ 50 % when one 
uses N= 10 driving bunches, and thus ∆η ≈ 1 %. In particular, the changes due to 
variations in σ1 /σ2 are: ∆η/ηMAX ≤ ±0.005,  ∆ET /ET ≤ ±0.005. The energy spread δW 
strongly depends on the rms- length σTB  of a test bunch, as well as its shape. Rectangular 
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bunches have the minimal energy spread, and for narrow bunches  (σTB ≤ σwake /40) the 
energy spread of a Gaussian bunch with σ1 = σ2 is almost as good as that of a rectangular 
one. However, δW is large for Gaussian bunches with σ1 ≥ 3σ2 or vice versa. For 
instance, δW of a Gaussian bunch with σ1 >> σ2  is larger by about 80, 70, and 60% than 
δW of a rectangular bunchd if σTB  ≈ 0.25, 0.03, and 0.015 of σwake, respectively. 

Figure 3 demonstrates the efficiency, accelerating gradient, and energy spread 
behavior when one varies the test bunch rms-length. The narrower test bunch has the 
higher accelerating gradient. 

(3.1.2) Although ηMAX, ξ, and ET, strongly depend upon the total rms-length σL   
of a driving bunch, they are weakly dependent on the variations in the drive bunch shape.  
When the test bunch shape is changed from Gaussian to triangular, and to rectangular (G-
∆-R), and σ1  /σ2 is varied too the maximum variations are (see the Tab. #1): 

 
Table 1* 
Inner Radius ∆η /ηMAX, % ∆ξ /ξ, % ∆ET /ET, % 
               A ≤ 0.5 mm +/- 6.2 +/- 1.6 +/- 5.1 
0.5 mm < A ≤ 1.5 mm +/- 7.3 +/- 2.0 +/- 5.4 
* N ≥ 5 
 

The maximum in ηMAX and ET happens when one uses the Gaussian shaped bunch with 
σ1 >> σ2. The improvement can be up to ∆η/η  = 0.14 in the efficiency, and ∆ ET / ET ≈ 
0.10  in the gradient. Practically, instead of using bunches with σ1 >> σ2  one can limit 
oneself by utilizing bunches withe σ1  ≥ (3÷4)σ2, since  

ET (σ1 ≥[3÷4]σ2) ≈ 0.98⋅ ET (σ1 >>σ2), and the same small difference is in the efficiency. 
The more narrow the driving bunches are, the higher will be the radiated power, and 
accelerating gradient (see Fig. 4, and 5) 

 The energy spread δW is minimized when one uses triangular drive bunches with 
σ1 << σ2, and maximized if Gaussian drive bunches with σ1 >> σ2 are used. The 
difference ∆δW /δW is essentially determined by the test bunch, and can be up to 50% (of 
the higher value) at σTB ≈ 0.25σwake, and become less than 25 % at σTB ≤ 0.04σwake. 
However, the Gaussian drive bunches with σ1 << σ2 provide the energy spread almost as 
low as that from the triangular, σ1 << σ2  drive bunches (the difference is about 10% of 
the higher value).  

The accelerating gradient after a train of Gaussian, σ1 << σ2 drive bunches is 
higher by about 7% than that after the train of triangular (∆),σ1 << σ2 drive bunches; but 
is lower by about 5 % than the gradient after the Gaussian, σ1 >> σ2  drive bunch train. 
Consequently, one might recommend Gaussian drive bunches with a short head, and a 
long tail to compromise between the test bunch energy spread, and the accelerating 
gradient. 
                                                 

d I.e. the difference ∆δW /δW = 80, 70, and 60% (of the lower value) 

e The symbol ÷ is being used to indicate the range of values 
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 (3.1.3) Everywhere in this statement ε = const, and the outer radius, R, is adjusted 
so that the wake period L is preserved. (A is the inner radius, σL is the rms- length of a 
drive bunch, σTB  is the rms- length of a test bunch)  

(a) The numerical study shows thatf if →A Κ~A , Κ→ ~
LL σσ , and 

Κ→ ~
TBTB σσ  then the following quantities are unchanged:  

∑ =Ω
m

m const , ξ =const, ∑ =Ω
m

mT const , and χρ = const, or equivalently the maximum 

efficiency, maximum accelerating gradient, and radiated power behave as: 
 

ηMAX = const, 
2~KEE TT ⋅→ , 

2~KPP ⋅→ . 
 

 (b) If →A Κ~A , Κ→ ~
LL σσ , and Κ→ ~

TBTB σσ , where 5~ ≤Κ , then the 
energy spread, and coherent length behave as:  

 

δW ≈ const,     (with a range of ∆δW /δW ≤  ± 1 %) 

Κ→ ~
wakewake σσ ,    (with a range of 

( )
≤

Κ
Κ∆
~
~

wake

wake

σ
σ   ± 0.5 %) 

 

  (c) The enhancement factor, ξ, has a maximum at some opt
Lσ . If →A Κ~A , then 

Κ→ ~optopt
LL

σσ .  
 

(d) When opt
LL σσ ≥  and grows, the efficiency, ηMAX, quickly drops. If opt

LL σσ ≤  
the efficiency changes negligibly; for instance, %5.0)0()( ≤− MAX

opt
LMAX ηση  if N ≥ 10. 

 

If one plots 2~/ KP  (scaled radiated power) vs. KL
~⋅σ (scaled rms- length) [see 

Fig. 4], or 2~/ KET (scaled accelerating gradient) vs. KL
~⋅σ [see Fig.5] with the 

coefficient K~  computed as the radius ratio, i.e. 0/~ AAK =  (where 0A  is some chosen 
reference radius), one makes all curves corresponding to the different radii A coincide. 
This means that under the transformation →A Κ~A , Κ→ ~

LL σσ , Κ→ ~
TBTB σσ , and 

L = const (by adjusting R) one has: 2~KPP ⋅→ , and 2~KEE TT ⋅→ as was stated in  
(3.1.3) 

 
                                                 

f The symbol → is being used to indicate that one value (left-hand side) has been changed to another (right-
hand side) 
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FIG.4.  Scaled radiated power 2~/ KP  vs. scaled rms-length KL

~⋅σ  for two uniform 
drive trains with N = 10, and N= 20  bunches. The curves are given for three radii A 
= 1.5, 0.5, and 0.3 mm. The radius ratio is )5:3:1(~ =K . One sees that all curves 
corresponding to different radii A (but the same N) coincide. In all examples the 
head/tail ratio σσσσ1 / σσσσ2 = 4/1, wake period L = 0.21027 m. 
 
 

 
FIG.5. Scaled accelerating gradient 2~/ KET  vs. scaled rms length KL

~⋅σ  for two 
uniform drive trains with N = 10, and N= 20  bunches, and the test bunch rms- 
length σσσσTB = σσσσL /3. The curves are given for three radii A = 1.5, 0.5, and 0.3 mm. The 
radius ratio is )5:3:1(~ =K . One observes that all curves corresponding to different 
radii A (but the same N) coincide. In all examples the head/tail ratio σσσσ1 / σσσσ2 = 4/1, 
wake period L = 0.21027 m. 
 

 
Figure 6 shows that the enhancement factor always has its maximum at some 

value of the rms- length, opt
L

σ ; and under the transformation →A Κ~A , and L = const, 
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this maximum behaves as Κ→ ~optopt
LL

σσ . For instance, with A= 1.5 mm (ε = 9.65, and L 
= 0.21027 m) one finds opt

L1σ ≈ 1.640 psec. Changing to A = 0.5 mm it will be opt
L2σ ≈ 0.546 

psec, and for A = 0.3 mm оne will find opt
L3σ ≈ 0.328 psec. One sees that ( opt

L1σ : opt
L2σ : opt

L3σ ) 
= (1.5 : 0.5 : 0.3).  

 

 
 

FIG.6. Enhancement Factor ξξξξ  vs. drive bunch rms-length σσσσL for uniform drive 
trains with N = 10, and N= 20 bunches. The curves are given for three radii A = 1.5, 
0.5, and 0.3 mm. One finds that maxima occur at opt

L1σ ≈≈≈≈ 1.640, opt
L2σ ≈≈≈≈ 0.546, and opt

L3σ ≈≈≈≈ 
0.328 psec. One finds that the ratio of these opt

Lσ  to each other are exactly the same 
as the ratio of radii, i.e. ( opt

L1σ : opt
L2σ : opt

L3σ ) = (1.5 : 0.5 : 0.3). (In all examples the 
head/tail ratio σσσσ1 / σσσσ2 = 4/1) 
 

Figure 7 demonstrates that the efficiency changes slowly if opt
LL σσ ≤ . 

With regard to (3.1.1) - (3.1.3) we point out that in investigating the dependence 
of DWA performances one should always adjust the test bunch position relative to the 
drive train so that the efficiency, and gradient are at their maximum values. The test 
bunch position is given by: zT = L⋅(1 − N −1/2) + ∆zk, where L is the periodg of the wake 
field, N is the total number of driving bunches, | ∆zk | << L  and is determined by 
maximization of the accelerating gradient. 
 

                                                 

g To determine L one maximizes the enhancement factor ξ [see Eq.(2.5)] 
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FIG.7. Efficiency vs. rms-length for the uniform N= 10 bunch drive train. One finds 
that for the rms – lengths less than opt

L1σ ≈≈≈≈ 1.640 psec the efficiency has almost the 
same value (this example is for head/tail ratio σσσσ1 / σσσσ2 = 4/1, A = 1.5 mm, σσσσTB = 0.147 
psec) 
  

(3.1.4) The energy spread does not depend on the drive train profile, assuming 
that drive bunches can have different changes, but are of the same shape. However, it was 
found that the shortest possible drive train with the highest possible charge in every 
single bunch gives the best in efficiency and accelerating gradient, assuming the total 
drive charge is preserved. Obviously, the simplest realization of a shortest drive train 
with the highest charge in every bunch is a uniform train.  Also to maximize the MM- 
DWA performance one should put a test bunch as close to a drive train as possible, i.e. at  
zT ≈ L⋅(1 − N −1/2).  

 Adding drive bunches to a driving train, one will have the efficiency, and 
accelerating gradient computed according to Eqs.(2.8), and (2.10). However, one can also 
try to redistribute the given drive charge between some number of identical bunches. In 

this case one has ∑
=

=
N

i
i constQ

1
, or equivalently [see Eq.(2.1)] the sum∑

=

=
N

i
i Nq

1

~  for any 

N. Under this condition the efficiency MAXη~ , accelerating gradient TE~ , and energy spread 
W~δ  become:  

 

MAXMAX ηη =~ ,  ( )NNEE TT /~~ ⋅= ,         WW δδ =~   
    
[the expressions for ηMAX, ET, and δW are given by Eqs.(2.8) , (2.10), and (2.11)] 

One observes that the efficiency and energy spread do not depend on N~ . Figure 8 
presents the typical example of behavior of the efficiency, accelerating gradient, and 

energy spread when the total charge of a drive train is preserved at 0
1

~ QNQ
N

i
i ⋅=∑

=
, or 

accumulates as N⋅Q0. The efficiency and accelerating gradient achieved after the train 
with NN ~=  driving bunches are always lower than the efficiency and gradient after 
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shorter drive trains ( NN ~< ), but with the total charge 0
~ QN ⋅ . The best performance will 

be achieved if one is able to put all the drive charge into a single bunch.  
 

 
 
FIG.8. The DWA performance vs. N, when the total drive charge = 21Q0 (constant 
for every N), or accumulates as N⋅⋅⋅⋅Q0. Inner Radius A = 0.5 mm, drive profile = 
uniform, drive bunch rms-length σσσσL = 0.8 psec, Gaussian, head/tail ratio σσσσ1 / σσσσ2 = 1:4, 
wake period L = 0.22154 m, test bunch rms-length σσσσTB = 0.02 psec (In (c) the spread 
is given for a Gaussian test bunch with σσσσ1 / σσσσ2 =1). 
 

The efficiency is reduced when the number of driving bunches, N, is increased 
because a) more driving bunches are situated further from a test bunch; b) when the 
distance between a driving bunch and the test bunch is increased, the driving bunch 
contributes less to the test bunch acceleration.  

 
. 
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B.  MM- DWA performance vs. the inner radius A, chosen wake field period L, outer 

radius R, and the dielectric constant εεεε 
 

The dependence of accelerating gradient on the radius, A, of the channel in the 
dielectric material directly follows from (3.1.3). Namely, if one reduces →A Κ~A  
accompanied by reduction in the bunch sizes Κ→ ~

LL σσ , and Κ→ ~
TBTB σσ  then the 

accelerating gradient scales as 2~KEE TT ⋅→ . Thus, changing from A = 1.5 mm to A = 
0.5 mm one increases the gradient by factor of 9. The reduction of bunch length is also 
essential: for example, if instead of a drive bunch with the rms-length of optimum size, 
one uses a drive bunch twice longitudinally oversized, the accelerating gradient is 
reduced by 40%. The efficiency also improves when one reduces the channel radius. For 
instance, going from A = 1.5 mm to A = 0.5 mm one improves the efficiency by ∆η /η ≈ 
15%, and by going from A = 1.5 mm to A = 0.3 mm one has improvement of about ∆η /η 
≈ 35%. 

There are two parameters to change the wake period, L: the outer radius, R, of the 
metal casing, and the electric permeability, ε, of dielectric material. At first we will study 
how the MM- DWA performance behaves when one changes L by adjusting R, and 
keeping ε = const. Then we will proceed to studying the performance for the opposite 
case: R =const., while ε  is changed to increase/decrease the wake period L.  
 

Table 2∋∋∋∋  

 1) 2) 3) Deviations, [%] 

R, [mm] 18.35 9.42 4.95  

L, [m] 0.210248 0.105193 0.052607  

ηMAX, % 29.5 29.2 29.3          1.0 

ET, [MV/m/nC] 599.0 596.5 595.5           0.7 

δW, [%] 3.18 3.20 3.23           1.6 
20
lossE , [MeV/m/nC] 492.4 492.5 491.0           0.3 

σwake, [psec] 0.833 0.83 0.826           0.8 

M[R] 1 .264 0.073  
∋  Inner radius A = 0.5 mm, ε =9.65; Gaussian drive bunch with σL = 0.546 psec and the head/tail ratio σ1 / 
σ2 =4/1; Gaussian test bunch with σTB = 0.182 psec, σ1 / σ2 =1; 20

lossE  - energy losses by the i = 20th bunch 
in a uniform drive train. 

 

Changing the outer radius R, but preserving the dielectric constant ε, we find that 
the accelerating gradient does not change: ),,,(),,,,( εσσεσσ AERAE TBLTTBLT = , and 
the energy losses experienced by every consecutive bunch in a drive train do not change 
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either: ),,(),,,( εσεσ AERAE L
i
lossL

i
loss = . Also the coherent length remains the same: 

),,(),,,( εσσεσσ ARA LwakeLwake = . An example is given in the Tab. #2.  

The overall length of a MM- DWA is determined by the accelerating gradient, and 
thus is independent of changes in R. The length of the stage (when a DWA is divided to 
several stages such that after each stage the drive bunches which fall out of synchronism 
with the wake field are kicked out, and fresh highly energetic bunches are introduced) is 
determined by σwake, and the set of values i

lossE , and thus is independent on R. Since, both 
the overall length, and the stage length do not change, the number of stages remains the 
same. Consequently, the amount of supporting hardware (such as kicker- magnets, 
steering, and focusing magnets, etc) remains unchanged if one changes R. The only 
obvious advantage of using the lower R is the reduction in the weight of dielectric 
material. The weight coefficient showing by how much the dielectric mass changes is 
computed as: 

 

),(
),(][ 11

22
1

22

ε
ε

RE
RE

AR
ARRM

T

T⋅
−
−=        (2.13) 

 

For instance, if A = 0.5 mm, ε =9.65, and one goes from R = 18.35 mm to R= 4.95 mm 
(the wake period becomes 4 times shorter) the dielectric weight is reduced by almost 14 
times. 

 Thus, one concludes, that, in general, there are no advantages, or disadvantages in 
choosing some particular R: the number of required elements, total length, and 
construction expense should stay the same. 

The changes in the outer radius, R, do not provide any means to reduce the MM- 
DWA cost, but what about ε? We start with an example presented in the Tab. # 3. 

First of all, one sees that with higher dielectric constants the efficiency drastically 
improves. Growth up to 2 times in ηMAX is possible when one changes from ε ≈ 10  to  ε 
≈ 150. By going to the higher ε one reduces the accelerating gradient, which results in the 
increment in the MM- DWA length if one is planning to preserve the final energy gain. 
However, the energy losses i

lossE become smaller too, which results in the lengthening of 
the stage. At the higher ε the number of required sections (stages) is reduced. For 
instance, changing from ε ≈ 3 ÷ 10 to ε ≈ 150 one can reduce the number of stages, and, 
consequently, the number of kickers, steering, and focusing magnets, and the number of 
vacuum channels by ≈ 20 %. Thus, some cost reduction is possible when one employs 
high dielectric constant materials. 
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Table 3♠♠♠♠  

 1) 2) 3) 4) 

ε 140.40 35.82 9.65 3.00 

L, [m] 0.209370 0.104857 0.052627 0.025782 

ηMAX, % 34.2 30.0 23.6 19.3 

ET, [MV/m/nC] 107 140 146 131 

δW, [%] 1.66 1.17 0.74 0.65 
20
lossE , [MeV/m/nC] 76.0 108 121 110 

σwake, [psec] 1.58 1.60 1.64 1.63 

M[R] 1.30 1 1 1.12 

LINAC Length♥  130 % 100 % 100 % 112 % 

Stage Length♦  S, [m] 2.40 1.70 1.52 1.67 

Number of Sections 82 % 90 % 100 % 102 % 
♠  Inner radius A = 1.0 mm, outer radius R =5.43 mm; drive bunch with σL = 1.09 psec and σ1 / σ2 =1/4, test 
bunch with σTB = 0.182 psec; 20

lossE  - energy losses by the i = 20th bunch in a uniform drive train; for M[R] 

see Eq.(2.13); ♥  to achieve the same final energy; ♦  for the initial energy 0
iW =730 MeV, and drive bunch 

charge = -4 nC  

 
2.5. SUMMARY and DISCUSSION 

 
We have developed and presented a general formalism to describe the interaction 

between the electron bunches and their wake fields, each having an arbitrarily chosen 
longitudinal and transverse particle distribution, combined in a train of any desired 
charge profile. We have analyzed numerous cases and have drawn quantitative 
conclusions about the behavior of the MM- DWA performance: (a) the amount of power 
radiated by drive bunches into the wake field; (b) efficiency of energy transfer from a 
drive train to a test bunch; (c) accelerating gradient acting on the test bunch; and (d) 
energy spread of the test bunch, as affected by changes in the structure, bunch 
dimensions, and type of a dielectric material. Among other things, we have demonstrated 
that the efficiency and accelerating gradient are negligibly affected by the longitudinal 
shape of a drive/test bunch as long as the bunch rms- length is preserved. We have found 
an important scaling law that provides a straightforward way to connect changes in the 
DWA performance with changes in the DWA parameters.  

We did not consider, however, transverse forces arising due to the radial electric, 
and azimuthal magnetic fields [see Eq.(2.2)]. The net transverse force acting on some 
portion of the test/drive bunch is defocusing. Depending on the bunch charge and 
dimensions, and the time of interaction between the bunch and wake field, the transverse 
bunch size may grow sufficiently so that the transverse features should be taken into 
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account (see Eq.(2.3)]. Moreover, such bunch defocusing may lead to significant losses 
of charge on the surface of the dielectric. Defocusing then must be suppressed by the 
external focusing. The extensive study of transverse forces and their impact on beam 
dynamics in rectangular structures has been conducted by several authors [4][5][6][7]. An 
approach to consider the transverse forces in circular structures has been developed in the 
course of our work; however, it is beyond the scope of this article.  
 In MM- DWAs using nondispersive dielectrics (i.e. with ε independent of 
frequency), the number of drive bunches should be limited by N ≈ 20 because the 
efficiency becomes low if N > 20 [see Fig.8.a.] 

An improvement in the efficiency can be achieved by going to the higher 
dielectric constant ε. A growth of up to 2 times in ηMAX is possible when one changes 
from ε ≈ 10 to ε ≈ 150. However, the energy spread grows by the same factor of 2, or 
slightly more. The best tradeoff between the efficiency and energy spread seems to be at 
ε ≈ 30.  

An improvement in the accelerating gradient is achieved through the reduction of 
radius A of the inner channel, accompanied also by corresponding reduction in the 
longitudinal sizes of drive/test bunches σL, and σTB. While the bunch shape is not crucial 
at all, the reduction of bunch rms-length is essential. A twice-oversized drive bunch, for 
instance, causes a reduction in the accelerating gradient by about 40 %.  

The energy spread is lowered by reduction of the test bunch rms- length. In the 
structures with the inner radius of the order of a few millimeters (0.5 ÷ 2 mm) where the 
wake field is excited by drive bunches of the order of a few or less picoseconds (σL  ≤ 2 
psec), test bunches with the rms- length of a few hundred femtoseconds (σTB  ≈ 300 ÷ 100 
fsec) will have the energy spread between 10-2 ÷ 10-3. The energy spread ~10-3 or less is 
achieved for test bunches with the rms- length of several tens of femtoseconds (σTB  ≤ 80 
fsec). 

A mass reduction of a dielectric material can be done by changing the outer radius 
R. Such change has little effect on the accelerating gradient, and other related 
performance quantities. 
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