

Broadband microwave emissions from LWIR picosecond laser ablation with pre-ionization

Proposal #312114

PI: Dr. Andy Goers, Johns Hopkins Applied Physics Laboratory

Co-PI: Dr. Jennifer Elle, Air Force Research Laboratory

Funding: ONR (JHU/APL, received) AFRL Program Funds (AFRL, received)

Broadband emissions from pulsed laser ablation

Extreme nonlinear optics of ultra-short pulse lasers enables research and applications across the entire electromagnetic spectrum...

Radio	Microwave	Infrared	<mark>∨is</mark>	UV	X-Ray	Gamma
RF	EMP	Parametric Conversion		Hig G	h Harmonic eneration	
60	Terahert Sources	z S Su	Optica percontir	nuum	Acc li	elerator-based
40 20 0 -40 -40 -1 -0.5 0	0.5 1 1.5 2 2.5 time [ns]				OPN News, Laser Wak Generation Light Source	Kefield Accelerators: Next- ces," Albert 2018.

RF Emissions From Short Pulse Laser Ablation

- Low-frequency (RF) emissions measured from ablation as early as 1970's
- Typically found in large laser facilities with lasers reaching relativistic intensities
- Recent work has investigated "atmospheric" and relatively low intensity sources of EMP from laserplasma interactions
- Three main sources of low frequency emission
 - "Rectification" physics
 - Long scale-length plasma currents
 - Target charging and neutralization

Wavelength Scaling into the LWIR

λ (microns)	Energy (joules)	Duration (fs)	Laser Parameters: λ (μ m), Trradiance (x10 ¹¹ W/cm ²)
0.8	.04	50	-0.8, 236.1
1.0	.03	1300	-1.0, 21.1
9.2	3	2000	—9.2 , 48.5
10.6	.01	3000	—10.6, 3.1

• FY22 results exceeded expectations!

 Orders of magnitude improvement across all frequencies achieved with BNL laser

Target pre-ionization

- Previous work at JHU/APL showed orders of magnitude increase in RF emissions from pre-ionized dielectric targets with NIR drive lasers
- Hypothesize improved laser absorption at the critical density layer in the expanding plasma causes a higher electron temperature

S. Varma, J. Spicer, B. Brawley, and J. Miragliotta, "Plasma enhancement of femtosecond laser-induced electromagnetic pulses at metal and dielectric surfaces," *Opt. Eng.*, vol. 53, no. 5, p. 051515, 2014.

Key experimental questions

- How does RF emission change with laser incidence angle and intensity? Can we match theoretical models?
 - How does emissions strength compare between dielectric and metal targets?
- Does pre-ionization increase the RF emission from solid targets similar to what we see in the NIR?
 - What pulse separation time scale improves RF emission?
 - Does pre-ionization improve LWIR absorption by the plasma?
- Can we detect a temperature electron population through keV bremsstrahlung? Does the electron temperature correlate with RF emission?
- What effects does the emitted ultrawideband RF field have on electronic devices?

X-ray emission spectrum measured from USPL ablation of copper wire in air

Diagnostics

- RF collection equipment
 - High speed oscilloscope(s) and broadband horn antenna(s)
- Shadowgraph imaging of shock dynamics
 - mW-class laser diode and gated ICCD
 - Shock evolution allows estimate of laser absorption
- Pump reflectometer
 - Power meter based reflectance measurement
- X-ray spectrometer (preferably filter based)
 - Detects bremsstrahlung emission from hypothesized high temperature electrons
- "DUT" electronics
 - Field effects on transistors, etc.

Funding / Timeline

- AFRL and JHU/APL programs are funded through FY23
- Lead times for experimental components push likely timeline to summer 2023
- Proposed 1 year effort 2 to 3 weeks of beam time
 - Week 1 Set up dual pulse pre-ionization formats. Check initial RF signal levels and begin setup of diagnostics.
 - Week 2 Scan pulse delay with spectrometer and probe pulse diagnostics to verify optimal beam timing and overlap. Study RF emission as a function of incident laser properties.
 - Week 3 Test electronic device response to high field RF.
- Potential FY24 proposal for more advanced plasma diagnostics (e.g. spectral interferometry on reflected and/or transmitted femtosecond probe beam)

Positive results likely to drive continued interest in ultrafast CO2 laser development from DoD sponsors

JOHNS HOPKINS APPLIED PHYSICS LABORATORY

Electron Beam Requirements

No electron beam time requested

CO₂ Laser Requirements

Configuration	Parameter	Unit s	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single	 Regen beam needed for beam particular 	th alignment.
	Pulse Length	ps	2	 Request access to regen output to 	o install
	Pulse Energy	mJ	6	Mach-Zehnder style pulse splitter	(2 pulses,
	M ²		~1.5	provided by JHU/APL)	
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	0.5 – 2
	Pulse Mode		Single	JHU/APL to install a pulse splitter for some experiments	Single / Double
	Pulse Length	ps	2		2ps
AL	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year	1 – 4

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	800nm
FWHM Bandwidth	nm	20	13		13
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	75
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	20+
Energy to Experiments	mJ	>4.9	>80		10+
Power to Experiments	GW	>98	>1067		
System	Units	Typical Values		Comments	Requested Values
Wavelength	nm	1064	Single p	oulse	
Energy	mJ	5			
Pulse Width	ps	14			
Wavelength	nm	532	Freque	ncy doubled	
Energy	mJ	0.5			
Pulse Width	ps	10			

Special Equipment Requirements and Hazards

- Electron Beam
 - N/A
- CO₂ Laser
 - 'Single beam' pre-ionization scheme will require installation of a pulse stacker between the CO2 regenerative amplifier and the main power amp.
 - Experiments performed in air will require disassembly of part of the beam routing vacuum tube. We anticipate using the existing 80/20 stands to help support our experimental diagnostics and alleviate space constraints. Setup will require at least 4' x 1.5' space, preferably a little more.
- Ti:Sapphire and Nd:YAG Lasers
 - Requesting use of the Ti:Sapphire beam for probe and/or target pre-ionization. Beam will need to be routed to our experimental area. Experiments at JHU/APL ongoing to determine if compressed vs uncompressed beam is needed.
- Hazards & Special Installation Requirements
 - Large installation (chamber, insertion device, etc.): Disassembly of vacuum beam line to accommodate experiment in ambient environment
 - Cryogens: N/A
 - Introducing new magnetic elements: N/A
 - Introducing new materials into the beam path: CO2 pulse stacker between regen and main amp (ZnSe optics)
 - Any other foreseeable beam line modifications: No

Experimental Time Request

CY2023 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)	0.5 – 1 week	2 weeks
Laser* + Electron Beam		

Total Time Request for the 3-year Experiment (including CY2023-25)

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)	0.5 – 1 week	2 weeks
Laser* + Electron Beam		

* Results may warrant follow-on FY24/25 proposals if funding is secured

* Laser = Near-IR or LWIR (CO_2) Laser

JOHNS HOPKINS APPLIED PHYSICS LABORATORY