

Ionization Currents and Secondary Radiation from Two-Color Pulses at Long Laser Wavelengths

Proposal # 312798

Funding Status: NRL Base Program, Received

Alexander Englesbe, Jessica Peña, Michael Helle, Daniel Gordon Plasma Physics Division, Naval Research Laboratory

Controlling Tunneling Ionization of Air with Two-Color Pulses

- For ionization of atmospheric air, traditional NIR sources ionize via multiphoton
- Long wavelengths are needed to drive tunneling ionization in air
- The liberation of electrons constitutes an ionization current, whose time dependence can be step-like (tunneling) with each laser field maximum, or vary slowly with the laser envelope (multiphoton)
- The relative phase of a two-color pulse changes the shape of the laser electric field waveform, and thus the ionization currents

Ionization Currents Determine Secondary Radiation

- Understand how ionization physics of air changes as a function of laser wavelength
- Use microwave, THz, and laser harmonics that radiate as a consequence of ionization currents (secondary radiation) to infer ionization physics
 - Amplitude and frequency spectrum
- Identify generation mechanism of microwave radiation
 with two-color pulses
- Link early and late plasma lifetime by combining secondary radiation measurements with plasma diagnostics
 - Interferometry and optical emission spectroscopy

I. Babushkin, J. Mod. Opt. 64(10), 1078 (2017).

- Two-color scheme is common to generate THz in air, but doing it with LWIR fundamental would be unique (no publications yet as far as we know)
- Two-color NIR is in multiphoton regime, but Keldysh theory doesn't neatly apply. LWIR would be far into tunneling regime
- Two-color microwave generation is different from single-color, but mechanism is unclear. Going to tunneling regime may clarify physics.

Compare Relative Phase Dependence of Secondary Radiation

- Two-color scheme is common to generate THz in air, but doing it with LWIR fundamental would be unique (no publications yet as far as we know)
- Two-color NIR is in multiphoton regime, but Keldysh theory doesn't neatly apply here. LWIR would be far into tunneling regime
- Two-color microwave generation is different from single-color, but mechanism is unclear. Going to tunneling regime may clarify physics.

Experimental Goals and Setup

- Complete dataset = secondary radiation + plasma diagnostics as a function of two-color relative phase for single laser pulse format
- Deploy single-shot, triggerable measurements of:
 - Microwave radiation
 - THz radiation
 - Brunel harmonics
 - Plasma interferogram
 - Plasma optical emission spectrum
- Repeat experiment on NRL lasers: NIR (Ti:sapphire), SWIR + MWIR (OPA)
- Use relative phase dependence for quantitative points of comparison for simulations: SeaRay, CHMAIR/SPARC, and TurboWave

- Plasma currents radiate a broadband electromagnetic pulse that extends down to sub-GHz frequencies
- Detect microwaves with a high-frequency d-dot probe, sensitive to fields up to 50 GHz
- D-dot probe does not have a lower cutoff frequency unlike antenna
- Useful info contained in relative waveform amplitude, and the real part of the frequency spectrum

Microwave Receiver

9

• At the relative phase that maximizes microwave generation, we see very regular modulations of the microwave frequency spectrum

- Have also seen modulations with SWIR and NIR pulses
- Optimized amplitude is ~10X more peak power than single-color pulse
- Mechanism that explains single-color microwaves does not account for the spectral modulations
- Will modulations persist with tunneling ionization from LWIR driver?

SWIR, picosecond

10

30

20

Frequency (GHz)

10

Image echelon through EO crystal on to camera

Dual echelons

Polarizer

CCD

 $f_2 \lambda/4$

Read out THz waveform from intensity in boxes

Subtract CCD images with and without THz field S. Teo, *Rev. Sci. Inst.* 86, 051301 (2015).

- Want to look for changes in THz spectrum due to relative phase
- Echelon-based electro-optic sampling obviates delay line scanning over many laser shots
- Sample \sim 2 ps THz field at 10's fs resolution over \sim 10 ps time window
- Requires synchronized NIR laser pulses
- Build our own at NRL, and thoroughly test before ATF experiments

- Need tunneling ionization to produce Brunel harmonics cannot be done in air with NIR laser
- The relative amplitudes and linewidths of the Brunel harmonics contain valuable information about electron behavior within laser field
- Linewidths related to number of jumps in ionization current.
 Look for changes in linewidth with relative phase, and also look for trends with fundamental laser wavelength
- Primarily use NIR-SWIR spectrometer in ATF experiments, but will also look at higher order harmonics in visible range

Harmonic Order	2	3	4	5	6	7	8	9	10	11	12	13	14
Wavelength (µm)	4.6	3.1	2.3	1.8	1.5	1.3	1.1	1.0	0.92	0.84	0.77	0.71	0.66

- Relative phase relationship between THz and Brunel harmonics can be simulated using carrier-resolving solver – SeaRay
- Difficult to discriminate low-order bound electron harmonics and Brunel harmonics
- Focus of year 2 experiments will be comparing Brunel and recollision-driven harmonic generation in air

1.9 + 3.9 μm pulse Brunel harmonics vs. relative phase, Experiment

- Optical emission spectroscopy over large spectral range (e.g. 350-1100 nm) can give rough idea of electron kinetics
 - Compare emission lines to two-color pulses at other fundamental wavelengths
 - Population and decay of many excited states takes time period much longer than laser pulse, ionization currents
 - Benchmark air chemistry using CHMAIR/SPARC
- Interferometry to measure nominal plasma density and size:
 - Input an accurate electron density into simulations
 - If two-color field perturbs ionization rate in space and time, this may appear in interferogram fringes
 - Transverse probing

- Use the secondary radiation (microwaves, THz, and Brunel harmonics) to understand the role of ionization currents, and other potential collisional and collective charged particle dynamics excited by the two-color laser field.
- Link early and late plasma characteristics with concurrent measurements of the plasma size, density, and optical emission spectrum.
- Field single-shot diagnostics. Cameras for spectroscopy, interferometry, and oscilloscope for microwave receiver are triggerable. Need to build up echelon-based THz receiver.
- Integrate LWIR results in comparison study with NIR, SWIR, MWIR wavelengths

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	eam Wavelength		9.2	Wavelength determined by mixed isotope gain media	
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 microns
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	< 100 GW
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2 ps
	Pulse Energy	J	~5	Maximum pulse energies of >10 J will become available within the next year	~ 100-150 mJ
	M ²		~2		
	Repetition Rate	Hz	0.05		0.05
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear

Other Experimental Laser Requirements

<u>I</u> n*
PPD

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	800 nm
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	~ 50 fs
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	< 7 mJ
Energy to Experiments	mJ	>4.9	>80		< 4 mJ
Power to Experiments	GW	>98	>1067		<< 100 GW

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	
Energy	mJ	5		
Pulse Width	ps	14		
Wavelength	nm	532	Frequency doubled	
Energy	mJ	0.5		
Pulse Width	ps	10		

Parameter	Unit s	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	<i>Full range is ~15-75 MeV with highest beam quality at nominal values</i>	
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required. NOTE: Further compression options are being developed to provide bunch lengths down to the ~10 fs level	
Transverse size at IP (σ)	μ m	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	
Rep. Rate (Hz)	Hz	1.5	<i>3 Hz also available if needed</i>	
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	

- Introduction of transmissive optics into LWIR beam:
 - Second harmonic crystal
 - Time delay compensator
 - Half waveplate to co-polarize harmonics (needed if using Type 1 SHG)

CY2023 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only	N/A	
Laser* Only (in Laser Areas)	40	80
Laser* + Electron Beam		

Total Time Request for the 3-year Experiment (including CY2023-25)

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)	80	160
Laser* + Electron Beam		

* Laser = Near-IR or LWIR (CO_2) Laser