PBPL University of California Los Angeles, Particle Beam Physics Laboratory

Proposal ID: 312815 Harmonic Nonlinear Inverse Compton Scattering

Nonlinear ICS by $a_0 > 1$, CO_2 (9.2um)laser with Nd:YAG laser(1um)

BNL ATF user meeting March 2, 2023yr

Yusuke Sakai, Oliver Williams, Astushi Fukasawa, James Rosenzweig, UCLA Collaborator: Zhong Zhong, BNL NSLS

Funding source: DOE Accelerator Stewardship (DE-SC0009914)

BNL ATF Experiment Renewal: Experiment Goals {Return Of "Nonlinear"}

AE70: Nonlinear Compton, AE87: Hard X-ray ICS, AE##: Nonlinear Inverse Compton Scattering

Strong field physics: Bi-harmonic Compton interaction with ATF's CO₂ laser
Hard X-ray optics developments: DDS measurement & Focusing or Collimation
X-ray OAM investigation: Higher order harmonics by circular polarized CO₂ laser

Nonlinear ICS: $a_L \sim 1$, Transverse motion \rightarrow Relativistic, nontrivial longitudinal oscillation** Slow down electron's velocity, or Effective mass increase

 $E \iint_{ev_x} \overset{**}{\underset{v_x}{\leftrightarrow}} B \xrightarrow{ev_x} B/c = v_z$

★Red-shifting *and* BW increase:

Photon absorption by electron = Mass shift $hv_{X-ray} \Rightarrow hv_{X-ray} / (1 + a_L^2/2 + \gamma_0^2 \Theta^2)$

 $\bigvee_{v_z}^{c} \bigvee_{v_z}^{c} v_x$

★ Harmonic generation/angular dependence: *Multi-photon process in dense photon field* $hv_{X-ray} = 4\gamma^2 hv_L n$

AE70 experiment in BNL-ATF, 2014yr

BNL-ATF Beam parameters (as of 2014yr):

+ CO₂ laser: $a_{\rm L} \approx 0.6$ to 1.0 (~0.4-0.8 TW, > 3 J), FWHM $\approx 3.5 - 5.0$ ps, 10.6 μ m, $w_0 \approx 40 \ \mu$ m, $Z_{\rm R} \approx 500 \ \mu$ m

+ Electron beam: E = 65 - 70 MeV

 $Q \approx 0.3 \text{ nC}, \sigma_z \approx 300 \,\mu\text{m}, \sigma_x \approx 30 \,\mu\text{m}, \varepsilon_N \approx 1 \text{ mm mrad}, \beta \approx \text{a few cm}$

★Compton edge: $hv = 4\gamma^2 E_{\rm L} \approx 7 - 10 \text{ keV}$

Photons / pulse: $N_{\gamma} \approx 10^9$ (World record *)

Observed red-shift (*Direct evidence of the figure-8 motion*)

$$hv_{\text{ICS},1}^{\text{st}} = 4\gamma^2 v_{\text{L}} / (1 + a_{\text{L},0}^2 / 2) \rightarrow \therefore 0.5 < a_{\text{L},0} < 0.7$$

Y. Sakai, I. Pogorelsky, O. Williams et. al, Phys. Rev. ST Accel. Beams 18, 060702 (2015)

Angular distribution of harmonic radiation: *Linear polarization case*

\starOn axis components of 3rd harmonics \leftrightarrow Direct evidence of the longitudinal motion

Y. Sakai, I. Pogorelsky, O. Williams et. al, Phys. Rev. ST Accel. Beams 18, 060702 (2015)

\Rightarrow Mo-Si Multi (45) layer thickness: $d \approx 3.3$ nm

✤ Bragg angle:~ 25 mrad

☆Angle acceptance : ~ 50 mrad

☆ Reflectivity ~ 15% @ NSLS X15A (Z. Zhong)

Y. Kamiya, T. Kumita and P. Siddons et al., X-ray spectrometer for observation of nonlinear Compton scattering, Proc. Joint 28th Workshop on Quantum Aspects of Beam Physics (World Scientific), 103 (2003)

Projection of deflected ICS X-ray in a single shot at *hv* < 10 *keV* (*AE70*)

Laser energy 1.5 J, $a_L = 0.7$ Laser energy 3.0 J $a_L = 1$

Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime, Phys. Rev. ST Accel. Beams (2017)

Bi-harmonic nonlinear Compton interaction

Numerically calculated Lienard-Wiechert potential $E_{LW,x}(t_{screen})$ on (x, y, z) = (0, 0, 0)

Numerical estimate of bi-harmonic spectrum by ATF parameter (CO2: 9.2um, Nd: YAG 1064nm)

Only CO₂'s component

Bi-harmonic YAG's component

Experimental set up

Bi-harmonic Compton laser optics:

Input of CO₂ laser and YAG laser are opposite & CO₂ laser final optic has D ¹/₂ or ³/₄ inch hole

Experimental set up

Bi-harmonic Compton laser optics:

Input of CO₂ laser and YAG laser are opposite & CO₂ laser final optic has D ¹/₂ or ³/₄ inch hole

NEXT: ICS by circular polarized laser – OAM X-Gamma ray ?

NOTE: OAM X-ray can be also generate by FEL & Linear ICS by OAM laser.

Harmonic generation by circulary polarized CO₂ laser, in AE70

¹/₄ wave plate between regenerative and TW amplifier (Without compressor grating)

{Strong demands in Nuclear Photonics community:

REF Y. Taira, T. Hayakawa, M. Katoh, Scientific Reports volume 7, 5018 (2017)}

 \rightarrow Detailed spectrum distribution needs to be measured at 10s keV range.

Figure Observation of 3rd order harmonics in ICS by circularly polarized CO₂ laser Upper and lower figure corresponds to radiation pattern through 250 μ m thick Al filters and 1 mm thick Al filters respectively. Left upper: Linearly polarized 2nd harmonics. Middle upper:

2nd harmonics. Middle upper: Elliptically polarized 2nd harmonics. Right upper: 2nd harmonics generated from circularly polarized laser. Lower left: linearly polarized 3rd harmonics. Right lower: 3rd harmonic components generated by circularly polarized laser.

REF: AAC2022yr Proceeding

Single shot DDS measurement at X-ray energy of 87.5 keV > 10s keV

Quantitative study

→ Thick Laue Bent Crystal Efficiency > Bandwidth

Multi layer crystal: 5 - 20 keV (CO₂'s ICS component) Thick crystal: 20 keV - 200 keV (YAG's ICS component)

- ***** Radius of curvature R: 2.5 m
- Thickness: 1 mm
- ★ Bragg angle at 85keV: ~ 22 mrad
- * Crystal to MCP screen 0.3 m
- ***** Expected dispersion at screen: 10-20 mm:
- ***** Band width: ~ 10 keV
- * <u>Reflectivity (Efficiency): ~10%</u>

<u>Stats: Diffraction not observed yet in 87.keV Hard X-ray ICS run time.</u> \rightarrow First, 2nd – 3rd Harmonic radiation at 20-30 keV range should be <u>examined. Much higher detector efficiency, with more photon flux.</u>

PLAN

K Recover, or almost new installation of, nonlinear CO₂ ICS set up 1.5 year:

- 1. Complete laser vacuum transport. <On going now>
- 2. Installation of CO₂ laser optics with Regen signal at mJ; Establish alignment method <Summer 2023yr>
- 3. CO₂ laser high power test (Protection of YAG system & source CO₂ laser) <2023-24 yr>
- 4. Benchmarking a_{L,0} measurement of upgraded 5 TW CO₂ laser through harmonic components of nonlinear ICS <2024yr>
- X Single shot DDS measurement by Bent crystal 2nd, 3rd order harmonic (CO₂ laser) At ~30 keV range <2024yr>
- **Recover Nd: YAG laser optics for Bi-harmonic Compton <2025yr->**
- **%** 87.5 keV hard X-ray DDS measurement by Bent crystal <2025yr->
- X OAM study, Circularly polarized CO₂ laser. Depend on the polarization rotator <TBD>

T H A N K Y O U

Electron Beam Requirements

Parameter	Units	Typical Values	Comments	Requested Values
Beam Energy	MeV	50-65	Full range is ~15-75 MeV with highest beam quality at nominal values	70 MeV
Bunch Charge	nC	0.1-2.0	Bunch length & emittance vary with charge	0.3 nC
Compression	fs	Down to 100 fs (up to 1 kA peak current)	A magnetic bunch compressor available to compress bunch down to ~100 fs. Beam quality is variable depending on charge and amount of compression required.	None
			bunch lengths down to the ~10 fs level	
Transverse size at IP (σ)	μm	30 – 100 (dependent on IP position)	It is possible to achieve transverse sizes below 10 um with special permanent magnet optics.	< 30 um
Normalized Emittance	μm	1 (at 0.3 nC)	Variable with bunch charge	< 2 mm mrad
Rep. Rate (Hz)	Hz	1.5	3 Hz also available if needed	1 Hz
Trains mode		Single bunch	Multi-bunch mode available. Trains of 24 or 48 ns spaced bunches.	Single bunch

CO₂ Laser Requirements

Configuration	Parameter	Units	Typical Values	Comments	Requested Values
CO ₂ Regenerative Amplifier Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 um
	Peak Power	GW	~3		
	Pulse Mode		Single		
	Pulse Length	ps	2		
	Pulse Energy	mJ	6		
	M ²		~1.5		
	Repetition Rate	Hz	1.5	3 Hz also available if needed	
	Polarization		Linear	Circular polarization available at slightly reduced power	Linear & Circular
CO ₂ CPA Beam	Wavelength	μm	9.2	Wavelength determined by mixed isotope gain media	9.2 um
Note that delivery of full power pulses to the Experimental Hall is presently limited to Beamline #1 only.	Peak Power	TW	5	~5 TW operation will become available shortly into this year's experimental run period. A 3-year development effort to achieve >10 TW and deliver to users is in progress.	Max. aL>1
	Pulse Mode		Single		Single
	Pulse Length	ps	2		2 ps
	Pulse Energy	J	~5	<i>Maximum pulse energies of >10 J will become available within the next year</i>	Max
	M ²		~2		
	Repetition Rate	Hz	0.05		<< 0.05
	Polarization		Linear	Adjustable linear polarization along with circular polarization can be provided upon request	Linear & Circular

Other Experimental Laser Requirements

Ti:Sapphire Laser System	Units	Stage I Values	Stage II Values	Comments	Requested Values
Central Wavelength	nm	800	800	Stage I parameters are presently available and setup to deliver Stage II parameters should be complete during FY22	TBD
FWHM Bandwidth	nm	20	13		
Compressed FWHM Pulse Width	fs	<50	<75	Transport of compressed pulses will initially include a very limited number of experimental interaction points. Please consult with the ATF Team if you need this capability.	500 fs possible?
Chirped FWHM Pulse Width	ps	≥50	≥50		
Chirped Energy	mJ	10	200		
Compressed Energy	mJ	7	~20	20 mJ is presently operational with work underway this year to achieve our 100 mJ goal.	
Energy to Experiments	mJ	>4.9	>80		
Power to Experiments	GW	>98	>1067		

Nd:YAG Laser System	Units	Typical Values	Comments	Requested Values
Wavelength	nm	1064	Single pulse	1064
Energy	mJ	5		100-200 mJ
Pulse Width	ps	14		FWHM 14ps
Wavelength	nm	532	Frequency doubled	
Energy	mJ	0.5		
Pulse Width	ps	10		

Special Equipment Requirements and Hazards

• All item has been registered in ESR of AE87.

Experimental Time Request

CY2023 Time Request

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)		1 week (In EH. Only regen)
Laser* + Electron Beam	100	1 week (CO2 – ebeam Timing).
TWCO2 only in EH	16 hours	1 hour (Damage test)

Total Time Request for the 3-year Experiment (including CY2023-25)

Capability	Setup Hours	Running Hours
Electron Beam Only		
Laser* Only (in Laser Areas)		
Laser* + Electron Beam		2 weeks X 6 = 480 hours

* Laser = Near-IR or LWIR (CO_2) Laser