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Abstract

We correct the error in the sign of the pseudoscalar pole contri-

bution to the muon g − 2, which dominates the O(α3) hadronic

light-by-light scattering effect. The error originates from the fact

that the algebraic manipulation program FORM treats ε-tensor so

as to satisfy εµ1µ2µ3µ4εν1ν2ν3ν4η
µ1ν1ηµ2ν2ηµ3ν3ηµ4ν4 = 24, as opposed

to the expected value −24 when Minkowski space-time metric ηµν

is specified (at least in the version available before 1995). Replac-

ing the part εµ1µ2µ3µ4εν1ν2ν3ν4 by −ηµ1ν1ηµ2ν2ηµ3ν3ηµ4ν4 ± · · · in the

FORM-formatted programs, we obtained a positive value for the

pseudoscalar pole contribution, which agrees with the recent result

obtained by Knecht et al.
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In this brief article we report the result of our reexamination of the pseudoscalar

pole contribution to the muon g−2. In the previous studies [1, 2], the pseudoscalar

pole contribution had been noted to be the dominant term of the O(α3) hadronic

light-by-light scattering contribution to the muon g − 2, aµ ≡ (gµ − 2)/2. In view

of the expected accuracy of the new muon g − 2 measurement at the Brookhaven

National Laboratory (BNL) (∆aµ(exp) = 4 × 10−10), the present authors [1] and

Bijnens et al. [2] have examined this contribution carefully [2, 3], taking account

of the experimental data obtained for the Pγ∗γ-vertex (P = π0, η, η′) at CLEO

[4]. The primary purpose of this paper is to examine the sign of this contribution

in light of the two recent papers [5, 6]. We therefore concentrate on the π0 pole

contribution which gives the value

aµ(π0) = −55.60 (3) × 10−11 , (1)

in the naive vector meson dominance (nVMD) model [1]. This model simply mod-

ifies the Wess-Zumino term for the π0γγ-vertex by attaching ρ-meson propagators

which carry photon momenta k1, k2,
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Both Bijnens et al. [2] and Bartos et al. [7] obtained the negative value for the

pseudoscalar pole contribution independently of our result. Taking this value

into account as a part of the standard model prediction, it is found that the

current measurement of g − 2 indicates 2.6 σ discrepancy from the prediction of

the standard model [8, 9].

However, the recent papers [5, 6] pointed out that the pseudoscalar pole contri-

bution is positive, which is opposite to the sign of (1). If this is true, it will reduce

the deviation of the current BNL measurement from the standard model consider-

ably. In view of these papers [5, 6], and of the significance of the O(α3) hadronic

light-by-light scattering contribution in interpreting the current measured value of

aµ, we decided to reinvestigate the π0 pole contribution.

In the following, we summarize the results of our investigation to show various

points we have scrutinized closely. A full account is being prepared in a separate

paper [10] .

The first phase of examination consists of the following four steps of the original

calculation [1]:
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(1) We obtained the expression for the contribution to the µ̄µγ-vertex function

Γν(pI , pF ) (pI ≡ p− q/2 and pF ≡ p+ q/2 are the initial and final momenta of the

muon) by direct application of Feynman rules.

(2) We evaluated the trace of the γ matrices using the algebraic manipulation

program FORM to extract aµ from Γν(pI , pF ) by means of the magnetic moment

projection 1,

aµ = lim
q2→0

lim
{p·q→0;p2+q2/4→m2}

Tr (Pν(p, q)Γ
ν(pI , pF )) ,

P ν(p, q) ≡ m

16 p4q2

(
p/ − q/

2
+m

)(
(γνq/ − q/γν) p2 − 3 q2pν

)

×
(
p/ +

q/

2
+m

)
, (3)

where q is the incoming photon momentum.

(3) The result of Eq. (3) is plugged into a FORTRAN program written in the

formalism developed for the numerical evaluation of Feynman diagrams [11].

(4) The numerical evaluation of aµ is carried out with the help of the Monte Carlo

integration routine VEGAS [12].

In addition we confirmed by hand calculation and by MATHEMATICA that

the projection operator in Eq. (3) works correctly, by extracting the anomalous

magnetic moment aµ = FM(0) from

Γν(pI , pF ) =
(
FE(q2)γν + FM(q2)

1

2m
iσνλqλ

)
, (4)

with

σµν =
i

2
[γµ, γν] . (5)

After going through these steps

(I) we rederived the value given in Eq. (1) for the π0 pole contribution in the

nVMD model.

The next phase was to derive the result obtained in Ref. [5].

We first assumed that the expression given for aµ in Eqs. (3.4) and (3.5) of

Ref. [5] is correct and see if the numerical evaluation of them gives the value of

our Eq. (1) but with opposite sign, as claimed in Ref. [5]. We translated Eqs. (3.4)

1 We correct the typo-error for the expression for Pν(p, q) of eq. (3.24) in Ref. [1], which does
not affect the result obtained there.
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and (3.5) into an expression suitable for the numerical evaluation according to the

formalism of Ref. [11]. By carrying out the six-dimensional integration over the

Feynman parameters with use of VEGAS, we obtain the value in Eq. (1) but with

an opposite sign. This test not only confirms the result of Ref. [5] but also gives

an evidence that

(II) both Ref. [5] and our work performed the loop integration part correctly.

The disagreement in sign must therefore come from an earlier stage.

We therefore switched our attention to the task of projecting aµ out from

Γν(pI , pF ) by means of algebraic programs. Using the algebraic manipulation pro-

gram FORM we pursued the steps described in Ref. [5] in detail to see whether

we can reproduce their Eqs. (3.4) and (3.5). We found that

(III) the trace operation by FORM yielded the sign opposite to that of T1,2(q1, q2; p)

in Eq. (3.5) of Ref. [5].

We thus recognized the following two possibilities as most likely:

(a) Ref. [5] made a mistake in picking up the sign of the trace of the γ matrices.

(b) We made a mistake at the stage of picking up the sign of the trace of the γ

matrices systematically. By systematically we mean that we failed to identify the

sign irrespective of what projection operator was used to extract aµ; we derived

the value of Eq. (1) by both our own projection operator (3) and those given in

Eqs. (2.9) - (2.11) of Ref. [5]. All projectors gave the same result.

In examining the possibility (b), we noticed one crucial difference between

Ref. [5], which leads to the positive value, and ours, which leads to the negative

value; while Ref. [5] used the algebraic manipulation program REDUCE to perform

the trace calculation of the γ matrices, we used FORM instead. Recall that we

have used FORM even for examining the results of Ref. [5].

Thus we decided to check whether FORM works correctly, or whether we handle

it properly. The program FORM had been used successfully to calculate the QED

corrections to the g − 2 of the muon and the electron as well as other observables

by one of the present authors. However, this does not guarantee that it deals

correctly with the ε-tensor, the central object of our study of the pseudoscalar

contribution 2.

2 The calculation of Ref. [1] was carried out by a version of FORM available before 1995.
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The simplest test of this question is to see if FORM successfully verifies the

identity

εµ1µ2µ3µ4εν1ν2ν3ν4η
µ1ν1ηµ2ν2ηµ3ν3ηµ4ν4 = −24 , (6)

which should hold in Minkowski space-time. Unfortunately, the result turned out

to be +24, which indicates that the metric fixing statement in FORM (FixIndex

1 : −1, 2 : −1, 3 : −1;) did not work properly for εµ1µ2µ3µ4 . In order to see how this

affects our calculation, we repeated the trace calculation using the right-hand side

of the identity:

εµ1µ2µ3µ4εν1ν2ν3ν4 = − [ηµ1ν1ηµ2ν2ηµ3ν3ηµ4ν4 ± (the other 23 terms)] , (7)

where the other 23 terms are obtained by shuffling the order of {ν1, ν2, ν3, ν4} in all

possible ways. Each term contributes in the bracket with the sign + (−) if the even

(odd) permutation is performed to reach this order from {ν1, ν2, ν3, ν4}. We found

that the method using (7) led to a result opposite in sign to the previous result (1).

This means that FORM (at least the version we used) has an internal inconsistency.

On the other hand, REDUCE passed the same test without difficulty. Hence, we

conclude that it was the case (b) that actually happened 3. In other words, the π0

pole contribution in (1) must be changed

aµ(π0) = 55.60 (3)× 10−11 , (8)

in the nVMD model.

The sign of the pseudoscalar pole contribution (8) has returned to that of

Ref. [13] and agrees with that of Ref. [5]. But, in the former case, the program

containing the product of two ε-tensors has also been used to extract aµ. At the

same time, there was an error in the sign of the logarithmic term dominating

the pseudoscalar pole contribution, which was corrected in Ref. [1] 4. The double

switching of the sign has led accidentally to the positive value for the pseudoscalar

contribution in Ref. [13].

We conclude that the sign of all the results for the pseudoscalar pole contri-

bution as well as the axial-vector meson pole contribution described in Ref. [1, 3]

must be reversed. The signs of the charged pseudoscalar loop contribution and the

constituent quark loop contribution are not affected by the problem noted here.

3 The reader should also pay attention when he uses γ5 in FORM.
4 The delicate point will be described in Ref. [10].
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Collecting those results from Eq. (1.8) and changing the sign of Eqs. (1.9) and

(5.1) of Ref. [3], we obtain the new value

aµ(LL) = 89.6 (15.4) × 10−11 . (9)

as the current value of the O(α3) hadronic light-by-light scattering contribution

to the muon g − 2. This reduces the discrepancy between the measurement and

the prediction of the standard model to 1.6 σ deviations.
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