
BURT:
Back Up and Restore Tool

Nicholas T. Karonis
Argonne National Laboratory
Advanced Photon Source
Accelerator Systems Division/Controls Group
November 1994

BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool i

Table of Contents

Chapter 1: Introduction . 1
1. Assumptions . 1
2. About This Manual . 2

Chapter 2: BURT Overview . 3
1. burtrb. 3
2. burtwb . 4
3. burtmath . 5
4. burtset . 5
5. burtconvertsnap. 6
6. Execution . 6

Chapter 3: BURT Components . 7
1. Request Files. 7
2. Snapshot Files . 11
3. Dependency Files . 13
4. Log Files . 16

Chapter 4: Using BURT From a UNIX Prompt . 17
1. burtrb. 17
2. burtwb . 20
3. burtmath . 23
4. burtset . 25
5. burtconvertsnap. 28

Chapter 5: Using BURT From Its GUI. 31
1. Main . 31
2. Backup . 32
3. Restore . 35

ii BURT: Back Up and Restore Tool Document Revision: 1

4. Add/Sub . 38
5. Mult. 41
6. Set . 43

Chapter 6: Creating Your Own Snapshot Files . 47
1. Getting Started - Including burtpublic.h . 47
2. Parameters. 48
3. Columns . 49
4. Example . 49

Chapter 7: Conclusion . 57
1. Theory of Operation . 57
2. Limitations . 58

Appendix A: Command Usage . 59
1. burtconvertsnap. 59
2. burtmath . 60
3. burtrb. 61
4. burtset . 62
5. burtwb . 63

Appendix B: BURT Header File . 65
1. burtpublic.h . 65

Appendix C: Sample BURT Program. 69
1. snap.c . 69
2. makefile. 75

Appendix D: SDDS Snapshot File . 77
Bibliography . 81

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 1

Chapter 1: Introduction

In this document we address the problem of backing up and restoring sets of values in
databases whose values are continuously changing. In doing so, we present the Back Up and
Restore Tool (BURT). In this presentation we provide a theoretical framework that defines the
problem and lays the foundation for its solution. BURT is a tool designed and implemented
with respect to that theoretical framework. It is not necessary for users of BURT to have an
understanding of that framework. It was included in this document only for the purpose of
completeness.

BURT’s basic purpose is to back up sets of values so that they can be later restored. Each time
a back up is requested, a new ASCII file is generated. Further, the data values are stored as
ASCII strings and therefore not compressed. Both of these facts conspire against BURT as a
candidate for an archiver. Users who need an archiver should use a different tool, the
Archiver[2].

1. Assumptions

BURT is just one of the tools in the Experimental Physics Industrial Control System (EPICS).
It is assumed that the reader is familiar with EPICS and all its associated terminology, e.g.,
databases, Input/Output Controllers (IOCs), process variables, etc. A full description of EPICS
can be found in [6].

BURT allows the user to make use of a number of facilities provided by the C programming
language and the Standard C Library. Users of BURT are not required to use these features,
however they are nonetheless available. These features are the #define and #include
directives, the syntax of boolean expressions found in C, and functions found in the Standard C
Library, e.g., strcmp(). It is assumed that those users who wish to take advantage of these
features are familiar with them, and hence, we provide no description of them in this
document. A full description of these topics in C can be found in [5] and [7].

Chapter 1: Introduction
About This Manual

2 BURT: Back Up and Restore Tool Document Revision: 1

2. About This Manual

In the next chapter we provide a general overview of BURT, i.e., we present the suite of
programs that comprise BURT. Following that (Chapter 3) is a detailed description of all the
components and terminology found in BURT, e.g., request files, snapshot files, etc. Chapters 4
and 5 describe how to execute BURT from a UNIX prompt and its Graphic User Interface
(GUI), respectively. Chapter 6 discusses advanced features in BURT, e.g., generating your own
SDDS snapshot files. Finally, we conclude with Chapter 7 where we present the theoretical
framework that BURT is based upon and a discussion of where and why BURT, as
implemented, falls short of that framework.

BURT is also capable of understanding Self Describing Data Set (SDDS) files as well as
interacting with DevLib for the backing up and restoration of devices, although users of BURT
are not required to use or even be familiar with either. We provide no description of SDDS or
DevLib, instead we refer the reader to [1] for SDDS and [8] for DevLib.

Throughout the manual items surrounded by braces, i.e., {...}, should be interpreted as
optional. These are found in the description of the syntax of files and as options the user may
specify when executing BURT from a UNIX prompt. Filenames appear in italics. UNIX
commands are prefaced with a UNIX prompt > and all commands, command line switches,
and function names appear in boldface.

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 3

Chapter 2: BURT Overview

This chapter provides an overview of the five programs that comprise BURT. The details about
the components that appear in this chapter (snapshot files, request files, dependency files, RO
and RON process variables and devices) are described in Chapter 3. Again, this chapter merely
provides a general overview.

The first two programs, burtrb and burtwb, are used to backup and restore EPICS process
variable and device values from and to databases that reside on IOCs, respectively. The next
two programs in the BURT suite of programs, burtmath and burtset, are used to modify and
combine snapshot files and request files, respectively.

1. burtrb

The backup program, burtrb, takes a set of one or more ASCII files called request files,
(request files are fully described in Chapter 3 Section 1). They identify the process variables
and devices to backup. burtrb makes a list of all the process variables and devices from the set
of request files and takes a snapshot of their values from the IOCs. Their names and values are
written to a single snapshot file. Snapshot files are typed (snapshot files and their types are
described in Chapter 3 Section 2). The type of snapshot file burtrb always creates an Absolute
snapshot file.

Chapter 2: BURT Overview
burtwb

4 BURT: Back Up and Restore Tool Document Revision: 1

2. burtwb

The restore program, burtwb, takes a set of one or more ASCII files called snapshot files, for
example like those generated by burtrb, and sets the values of the process variables and
devices on the IOCs accordingly.

burtwb restores all the values either conditionally or unconditionally. The user can specifying
a set of conditions that burtwb will test before restoring any of the values. The conditions are
supplied to burtwb in the form of user-defined dependency files, (described in Chapter 3
Section 3). Dependency files specify conditions about values on the IOCs and the snapshot
files. Depending on the specified conditions, the values on the IOCs, and the values in the
snapshot files, burtwb restores either all or none of the values to the IOCs. If the user does not
specify any dependency files, then burtwb restores the values unconditionally.

In either case, conditional or unconditional restoration, any Read Only Notify (RON, described
in section Chapter 3 Section 1.2) values found in any of the snapshot files are reported in a
Nowrite snapshot file. If there are no RON values, then no snapshot file is generated.

burtrb

one Absolute
snapshot file

IOC IOC IOC IOC

one or more
request files

IOC IOC IOC IOC

burtwb
occasionally

one Nowrite
snapshot file
with RON
values

one or more
snapshot files

zero or more
dependency files

Chapter 2: BURT Overview
burtmath

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 5

3. burtmath

The arithmetic program, burtmath, operates on snapshot files. It allows the user to either add
or subtract corresponding values found in two snapshot files. As output it produces a Relative
snapshot file containing the sum or difference of the two input snapshot files.

burtmath also allows the user to multiply the contents of a single snapshot file by a scalar
constant. The output is a snapshot file that inherits its type from the input snapshot file.

4. burtset

The set operation program, burtset, operates on request files. It allows the user to perform
mathematic set operations, (union, intersection, or difference), on two request files to produce
a new request file.

one snapshot file

one snapshot file

burtmath
one Relative
snapshot file

one snapshot file,
type X

burtmath

scalar
constant

one scaled
snapshot file,
type X

one request file

one request file

burtset new request file

Chapter 2: BURT Overview
burtconvertsnap

6 BURT: Back Up and Restore Tool Document Revision: 1

5. burtconvertsnap

The final BURT program, burtconvertsnap, is a conversion program. It operates on a single
snapshot file by converting its format to either SDDS or non-SDDS.

6. Execution

BURT can either be executed directly from a UNIX prompt or from a Graphic User Interface
(GUI) that we have provided. The instructions regarding how to execute BURT in either mode
(UNIX or GUI) as well as a detailed description of BURT’s components are in the following
chapter.

burtconvertsnap
one snapshot
file, type X

converted snapshot
file, type X

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 7

Chapter 3: BURT Components

In this section we provide detailed descriptions of all of BURT’s components, e.g., request
files, snapshot files, etc., as well as descriptions of how BURT uses each of these components.

1. Request Files

Request files are ASCII files that identify a list of process variables and devices the user wishes
to backup. They are used as input to BURT’s backup program, burtrb, to produce snapshot
files and its set operation program, burtset, to produce other request files.

It is not possible to distinguish between atomic and composite devices in request files.
However, it is important to know that RO and RON tags as well as BackupMsg and
RestoreMsg messages are inherited by all the elements in a composite device.

1.1. Request File
Formats

BURT recognizes request files in two formats, non-SDDS and SDDS. Both of the BURT
programs that accept request files as input allow the user to intermix the formats freely in any
single execution. These two formats are not equivalent, syntactically nor functionally. In short,
non-SDDS request files allow the user to use the C #include and #define directives while
SDDS request files do not. On the other hand, the SDDS request files allow the user to specify
devices while non-SDDS do not.

1.2. Read Only
(RO) and Read
Only Notify
(RON) Tags

When composing a request file, the user has the option of tagging each item (process variable
or device) as Read Only (RO), Read Only Notify (RON), or not tagging it at all. The tags are
propagated to the snapshot file by burtrb. They instruct burtrb to backup the values and place
them into the snapshot file.

Chapter 3: BURT Components
Request Files

8 BURT: Back Up and Restore Tool Document Revision: 1

When the restore program burtwb is supplied that snapshot file as input, those items that were
tagged RO or RON do not have their values written back to the IOCs. Further, if there are any
RON tags in the snapshot file, burtwb creates a Nowrite snapshot file (snapshot files and their
types are described in Section 2) and places all the RON values into that file. The values of
those items that were not tagged are restored to the IOCs.

1.3. non-SDDS
Request Files

Non-SDDS request files are ASCII files that identify a list of process variables the user wishes
to backup. It is not possible to specify a device in a non-SDDS request file, only process
variables.

BURT ignores blank lines and lines that begin with % in non-SDDS files. This allows the user
to augment non-SDDS files with comment lines that begin with %.

Additionally, BURT processes these files with the C preprocessor. This allows the user to take
advantage of the #define and #include directives provided by the C programming language.
This is illustrated in the example at the end of this section.

The rest of the file are lines that have the following format:

{RO or RON} pvarname {nelements}

where

RO or RON - Optional. Read Only or Read Only Notify. This tags the process variable
as either Read Only or Read Only Notify. It instructs burtrb to backup the pro-
cess variable and place its value into the snapshot file. However, when the snap-
shot file is used as input to BURT’s restore program burtwb, this value is not
restored to the IOC.

pvarname - The record name and field name of the process variable to read. The
default field name is VAL.

nelements - Optional. Number of elements. For those process variables that contain
more that one data value, e.g., vectors, nelements can be used to backup the first
n elements. The default is to backup the all the data values of the process vari-
able.

1.4. Non-SDDS
Request File
Example

Following is an example of non-SDDS request files and how BURT processes them. Consider
the following three request files; req1, req2, and req3.

req1 %
% Example request file: req1
%

#define PREFIX LINAC
#include “req2”

 PREFIX:rec1

req2 %
% Example request file: req2
%

RO PREFIX:rec2

req3 %
% Example request file: req3

Chapter 3: BURT Components
Request Files

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 9

%
PREFIX:rec3
LINAC:rec4 5
RON LINAC:rec5

Here we examine how burtrb and burtset would process these files to construct a single list of
process variables if they were only explicitly given req1 and req3 as input.

The request files are processed in the order in which they are specified. Assume that req1 was
specified first (the syntax for BURT commands is in Chapter 4). It is processed by the C
preprocessor which notes the #define for PREFIX and then includes the second request file
req2. That request file is also processed through the C preprocessor, but does not find any
#define or #include directives. Processing continues and the first process variable request is
encountered, RO PREFIX:rec2 (from req2). The #define from req1 is used and the request
is changed to RO LINAC:rec2. This completes the processing of req2 and the processing of
req1 continues. The next request is translated and becomes LINAC:rec1. Note that the
#define found in request file req1 was applied to the request file req2 because it appeared
before the #include that brought req2 into req1. This concludes the processing of req1.

Now the second request file, req3 is processed. It is also processed by the C preprocessor
without any effect. Note the #define for PREFIX worked in req1 and req2, but not req3. The
final list after processing the req1 and req3 is:

RO LINAC:rec2
LINAC:rec1
PREFIX:rec3
LINAC:rec4 5
RON LINAC:rec5

This is the list of process variables that burtrb will attempt to backup.

1.5. SDDS
Request Files

SDDS request files are ASCII files that identify a list of process variables and devices the user
wishes to backup. Unlike non-SDDS request files, BURT does not process SDDS request files
through the C preprocessor. This means that users cannot take advantage of the #define and
#include directives provided by the C programming language when composing SDDS request
files. However, using SDDS request files enables the user to specify devices, something not
possible in non-SDDS request files.

BURT requires two columns in SDDS request files (ControlName and ControlType) and looks
for four other optional columns. BURT ignores all other information (columns and parameters)
in the SDDS file. In short, what makes an SDDS file a valid request file is the presence of the
two required SDDS_STRING columns, ControlName and ControlType. This point is
illustrated further in Section 2.3 where we discuss SDDS Snapshot Files. The table below
describes the information BURT is interested in when processing SDDS request files.

Column name SDDS Type
Required/
Optional Contents

Default
Value

Default
Meaning

ControlName SDDS_STRING required PV or Device Name

ControlType SDDS_STRING required ‘‘pv’’ or ‘‘dev’’

BackupMsg SDDS_STRING optional Dev read msg.
must be ‘‘-’’ for pv

‘‘-’’ ‘‘read’’

RestoreMsg SDDS_STRING optional Dev write msg.
must be ‘‘-’’ for pv

‘‘-’’ ‘‘set’’

Count SDDS_LONG optional number of ele-
ments. must be 0 for
devices

0 native count

Chapter 3: BURT Components
Request Files

10 BURT: Back Up and Restore Tool Document Revision: 1

The columns BackupMsg and RestoreMsg are used for devices only while the column Count is
used for process variables only.

If an optional column is missing, the default value is used and is interpreted according to the
default meaning. If an optional column is supplied, the user may supply the default value. For
example, the user is required to supply the default value “-” when supplying the BackupMsg
column for a row specifying a process variable (ControlType = “pv”). In either case, whether
the default value is implied by the omission of an optional column or it is explicitly provided,
BURT interprets each default value accordingly. For example, the default value for the column
BackupMsg is “-”. That value is interpreted by BURT to mean the message “read”.

1.6. SDDS
Request File
Examples

These points are illustrated in the following two example request files; req4 and req5.

req4 SDDS1
&column name=“ControlName”, type=string &end
&column name=“ControlType”, type=string &end
&data mode=ascii, no_row_counts=1 &end
LINAC:dev1 dev
LINAC:rec1 pv

Req4 is an SDDS request file with only the required columns. It specifies one process variable
and one device. Neither are tagged RO or RON, and in both cases the native count will be
backed up. Consider req5, a more robust request file.

req5 SDDS1
&column name=“ControlName”, type=string &end
&column name=“ControlType”, type=string &end
&column name=“Count”, type=long &end
&column name=“ControlMode”, type=string &end
&column name=“BackupMsg”, type=string &end
&column name=“RestoreMsg”, type=string &end
&data mode=ascii, no_row_counts=1 &end
LINAC:rec1 pv 0 RO - -
SR:dev1 dev 0 - - -
LINAC:rec2 pv 5 - - -
SR:dev2 dev 0 RO read set
SR:dev3 dev 0 RON get put

Here we have two process variables and three devices. The first process variable,
LINAC:rec1, is tagged RO and requests the native count. The second process variable,
LINAC:rec2, is not tagged and requests the first five elements of its value, presumably a
vector. Note that both of the process variables specify ‘‘-’’ as their BackupMsg and
RestoreMsg. In SDDS request files that have these columns, all process variables must specify
‘‘-’’ in those columns.

Following the process variables are devices. Note that the three devices all have a Count of 0.
Like BackupMsg and RestoreMsg for process variables, all devices must specify a Count of 0.
The first device, SR:dev1, is not tagged and implicitly specifies the default BackupMsg
‘‘read’’ and RestoreMsg ‘‘write’’. The second device, SR:dev2, is tagged RO and explicitly

ControlMode SDDS_STRING optional ‘‘-’’, ‘‘RO’’, or
‘‘RON’’

‘‘-’’ Restore value to
IOC

Column name SDDS Type
Required/
Optional Contents

Default
Value

Default
Meaning

Chapter 3: BURT Components
Snapshot Files

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 11

specifies the default BackupMsg ‘‘read’’ and RestoreMsg ‘‘set’’. The third device, SR:dev3,
is tagged RON and specifies its own BackupMsg and RestoreMsg, ‘‘get’’ and ‘‘put’’,
respectively.

2. Snapshot Files

Snapshot files are ASCII files that contain process variables and their values, presumably to be
restored to IOCs. They are used as input to BURT’s restore program burtwb, its arithmetic
program burtmath, and its snapshot conversion program burtconvertsnap.

Typically, snapshot files are generated as output of BURT programs, e.g., burtrb, burtwb, and
burtmath. As such, those BURT programs that accept them as input (burtwb, burtmath, and
burtconvertsnap) expect and insist that they conform to a very rigid format. For this reason,
users should never edit snapshot files. Those who do, do so at their own risk. In Chapter 6 we
describe the advanced features of BURT. There we describe that rigid format so that users can
create their own snapshot files from their own programs.

BURT recognizes snapshot files in two formats, non-SDDS and SDDS. All of the BURT
programs that accept snapshot files as input allow the user to intermix the formats freely in any
single execution. Like non-SDDS and SDDS request files, the two formats of the snapshot files
are not equivalent. Aside from their syntactic differences, SDDS snapshot files may contain
devices as well as process variables while non-SDDS snapshot files may only contain process
variables. This is not to say that if a request file has devices it cannot produce a non-SDDS
snapshot file. If the user requests that a non-SDDS snapshot be produced, BURT resolves all
device names to their process variable constituent(s) and places the process variable names
into the non-SDDS snapshot file. For SDDS snapshot files composite devices are reduced to
their atomic device constituents and they are placed into the snapshot file.

Snapshot files are ASCII files that start with a header section and conclude with the snapshot
data. The contents found in the header section of both non-SDDS and SDDS snapshot files are
identical. They only differ syntactically. The header identifies who generated the snapshot and
when. It also contains any keywords and/or comments the user saw fit to add at the time the
snapshot was generated. Finally the header identifies what type of snapshot file it is; Absolute,
Relative, or Nowrite.

2.1. Types of
Snapshot Files

BURT supports three types of snapshot files: Absolute, Relative, or Nowrite snapshot file. The
type of snapshot file instructs BURT (specifically burtwb) how to restore all the values in that
snapshot file.

When the values in an Absolute snapshot file are applied to the IOCs, they replace the values
that exist on the IOCs by default. When the values of a Relative snapshot file are restored, they
are added to the values on the IOCs by default. Burtwb’s treatment of each of these types of
files can be changed at the user’s discretion, i.e., Absolute written as Relative and vice versa.

The third type of snapshot file is Nowrite. It is a special type of snapshot file typically
generated as output from burtwb. When the values of a Nowrite snapshot file are applied to
the IOCs, it has no effect on them.

2.2. non-SDDS
Snapshot Files

Non-SDDS snapshot files are ASCII files. They have a header which is followed by data. The
structure of the file is very rigid, i.e., BURT expects that it generated the snapshot file and so it
expects everything to be where it put it.

Chapter 3: BURT Components
Snapshot Files

12 BURT: Back Up and Restore Tool Document Revision: 1

2.3. SDDS
Snapshot Files

SDDS snapshot files are ASCII files. They have a header which is followed by data. The
header is in the form of SDDS fixed value parameters and SDDS associate files. The names of
the request files used to generate an Absolute snapshot file appear as associate files. The
following table describes the parameters found in the header.

Following the header information is the data. The data appears in columns. The following table
describes the columns of the data portion.

There are two things of interest to note about the data columns. The first is that all snapshot
files have the two columns required by request files: ControlName and ControlType. This
means that snapshot files are valid request files, i.e., snapshot files can be used as request files.
In doing so, BURT uses the columns ControlName and ControlType, the columns required in
all request files, as well as the columns BackupMsg, RestoreMsg, ControlMode, and Count.
BURT ignores the columns Lineage and ValueString as well as all the parameters found in the
header.

The second thing to note about the data columns is that the column ValueString is a character
string. This is an explicit example of something that is true throughout all of BURT, for the
purposes of back up and restore, BURT views all data values as character strings. Only in
BURT’s arithmetic operation program, burtmath, does it ever consider values as numeric.
This will typically not cause any trouble to the user who simply backs up and restores values,
but is something that users should be made aware of if they are going to use snapshot files with
tools other than BURT, e.g., Mathematica, PV Wave, or applications they have written
themselves.

Parameter Name SDDS Type Value

TimeStamp string when snapshot was taken

LoginId string loginid of user who took snapshot

EffectiveUID string effective UID of user who took snapshot

GroupID string group ID of user who took snapshot

BurtKeywords string user supplied keywords

BurtComments string user supplied comments

SnapType string type of snapshot

Column Name SDDS Type Contents

ControlName SDDS_STRING PV or Device name

ControlType SDDS_STRING type of entity, ‘‘pv’’ or ‘‘dev’’

Lineage SDDS_STRING lineage of composite devices, for devices only, ‘‘-’’ for pvars

BackupMsg SDDS_STRING device read message, for devices only, ‘‘-’’ for pvars

RestoreMsg SDDS_STRING device write message, for devices only, ‘‘-’’ for pvars

ControlMode SDDS_STRING read only tag, ‘‘-’’, ‘‘RO’’, or ‘‘RON’’

Count SDDS_LONG number of elements, 0 for devices

ValueString SDDS_STRING value

Chapter 3: BURT Components
Dependency Files

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 13

3. Dependency Files

BURT allows the user to check that certain conditions are true before restoring its values with
burtwb. The user does this by specifying the conditions in an ASCII file called a dependency
file. Dependency files have a special syntax all their own. As such, they do not have the two
formats, SDDS and non-SDDS, like the request and snapshot files do. However, like non-
SDDS request files, they are processed by the C pre-processor. This enables users to take
advantage of the #define and #include directives found in C. Blank lines and lines beginning
with % are ignored.

Currently, conditional restoration is only available with the command line version of BURT
and not available through its Graphic User Interface. All non-blank and non-comment lines in
a dependency file have the following format:

{HALT or CONT} condition

where

HALT or CONT - Optional. Failure directive. This directs burtwb in the event that
this condition is false or cannot be evaluated (see ca_get() and ss_get() below).
HALT notifies the user that the condition failed and stops processing all together.
This means that no more conditions are evaluated and none of the snapshots are
restored to the IOCs. CONT also notifies the user that the condition failed, but
continues processing. If HALT or CONT are omitted, burtwb notifies the user
that the condition has failed and prompts the user whether or not to continue.

condition - Condition. The condition to be evaluated. BURT conditions follow the
same syntax as Boolean expressions (expressions that are either true or false, like
in an if statement) in the C language. Some of the relational operators are ==
(equal), != (not equal), <, <=, >, >=. etc. Some of the Boolean operators and con-
nectors are ! for ‘‘not’’ (negation), && for ‘‘and’’ (conjunction), and || for ‘‘or’’
(disjunction). When comparing character strings the function strcmp() should be
used.

Note, dependency files may only refer to process variables, not devices.The conditions in the
dependency files can refer to the values of process variables on the IOCs as well as values in
snapshot files. They do this by making calls to the ca_get() and ss_get() families of functions,
respectively.

3.1. ca_get() This family of function calls enables a condition to retrieve current values of process variables
from IOCs. Each process variable has a native data type, e.g., integer, floating point, etc. When
requesting values from the IOCs, the users may retrieve the data in its native form by making
the following call:

ca_get(pvarname)

On the other hand, the user may wish to retrieve the data as a type other than the value’s native
type. If so, the user may make any of the following calls:

ca_get_string(pvarname)

ca_get_int(pvarname)

ca_get_short(pvarname)

ca_get_float(pvarname)

Chapter 3: BURT Components
Dependency Files

14 BURT: Back Up and Restore Tool Document Revision: 1

ca_get_enum(pvarname)

ca_get_char(pvarname)

ca_get_long(pvarname)

ca_get_double(pvarname)

However, in using any of the calls in the ca_get() family, the user is restricted in that these
function calls return only the first data element of the named process variable. In other words,
it works fine for all scalar values but will only retrieve the first value in any vector.

If the process variable cannot be found, the entire condition in which the ca_get() call was
made is not evaluated. In that case, burtwb treats the entire condition as being false and
follows the failure directive of the condition as described above.

3.2. ss_get() This family of function calls enables a condition to retrieve values of process variables from
snapshot files. There are only two calls in this family:

ss_get(pvarname)

ss_get_string(pvarname)

ss_get() retrieves the value as it appears in the snapshot file. ss_get_string() also retrieves the
value as it appears in the snapshot file, and surrounds it with double quotation marks thus
turning it into a character string constant with respect to the C language.

 These calls will only work on those snapshot values that represent a single data element. If the
process variable name is not found in the snapshot files, the entire condition in which the
ss_get() call was made is not evaluated. In that case, burtwb treats the entire condition as
being false and follows the failure directive of the condition as described above.

Consider the following example. Recall the request files req1-req3 from Section 1.3 above.
They were used to generate the following list of process variables.

3.3. Dependency
File Example

RO LINAC:rec2
LINAC:rec1
PREFIX:rec3
LINAC:rec4 5
RON LINAC:rec5

Recall that the third process variable, PREFIX:rec3, found in req3 did not get the benefit of
the #define found in req1 and therefore was not transformed into a process variable name
found on the IOCs. Assume that these request files were processed by burtrb and the
generated non-SDDS snapshot file (omitting the header) looks as follows.

RO LINAC:rec2 1 222
LINAC:rec1 1 111
LINAC:rec4 5 3 444 555 666
RON LINAC:rec5 1 555

Note that PREFIX:rec3 from req3 does not appear in the snapshot file. It was not found on
the IOCs and was reported as such in the log file (log files explained in section 4). Note also
that, although five values were requested for LINAC:rec4 in req3, only three were read.

Chapter 3: BURT Components
Dependency Files

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 15

Consider the following dependency file, dep.

dep % contradiction
CONT 1 == 2

% both should fail because not_there
% is not in the database nor is it in the snapshot
CONT ca_get(not_there) < 5
CONT ss_get(not_there) < 5

% should fail because asking for a snapshot
% of a process variable that is NOT a single value
CONT ss_get(LINAC:rec4) != 6

(ss_get(LINAC:rec1)-ca_get(LINAC:rec1)) < 1000

We will assume that over time, all the values of all our process variables have changed to 0 on
the IOCs. An execution of burtwb with the snapshot file and dependency file above, in
conjunction with the values on the IOCs as described, would proceed as follows.

The first thing burtwb does is read in all the snapshot files. In this case there is only one. The
dependency file is then processed by the C preprocessor. Because dep does not have #define or
#include directives, this will have no effect. Burtwb processes the conditions by automatically
writing and compiling a C program based on the conditions and the failure directives. Burtwb
then executes that program.

In our example, the first condition fails because it is a contradiction. The user is notified that
the condition failed in the log file and processing continues as a result of the failure directive
CONT. If HALT had been specified instead, the user would have been notified that the
condition failed, processing would have terminated here, no other conditions would have been
evaluated and nothing would have been written to the IOCs. If no failure directive had been
specified, the user would have been notified that the condition failed and prompted whether or
not to continue.

The second condition is not even evaluated because the process variable not_there is not
on any of the IOCs. The user is notified of this in the log file and, again, because the failure
directive is CONT, processing continues.

The third condition is also not evaluated because the process variable not_there is not in
the snapshot file. Again, the user is notified and processing continues.

The fourth condition is not evaluated because, although the process variable LINAC:rec4 is
in the snapshot file, it does not represent a single atomic value. As we mentioned earlier,
ss_get() only works when the value in the snapshot file is a single atomic value. The user is
notified and processing continues.

The last condition is the only one that is evaluated, because all the values can be obtained. The
condition (111-0)<1000 is true, so processing simply continues.

The dependency file has been successfully processed, meaning no condition stopped
execution. burtwb continues by restoring the values in the snapshot file.

Chapter 3: BURT Components
Log Files

16 BURT: Back Up and Restore Tool Document Revision: 1

4. Log Files

There is a BURT component that did not appear in the overview chapter, log files. Each of the
programs that appear in BURT’s suite of programs produces a log file each time they are
executed. The log file is an ASCII file where BURT places diagnostic information. By default,
the information is written to UNIX’s stderr. This almost always means that by default the log
file information will appear on the screen.

The user can control where BURT puts the log file and how much information BURT places
into the log file. All of the programs allow users to instruct BURT to place the log file
information into a file rather than onto the screen. They also allow the user to increase the
amount of information so that BURT tells the everything it is doing. By default, BURT gives a
general overview about the execution of the program and it prints it on the screen. A full
description of how to specify where and how much information appears in the log file is in
Chapter 4.

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 17

Chapter 4: Using BURT From a UNIX Prompt

BURT can be executed in two ways; from a UNIX prompt passing it arguments on the
command line or from its Graphic User Interface (GUI). In this chapter we describe how to run
BURT from the UNIX prompt, or command line.

We make two assumptions here. First, that the reader is already familiar with all of BURT’s
terminology explained above. Second, that the reader is familiar with executing commands at
the UNIX prompt that accept arguments on the command line in the form of switches.

1. burtrb

This is BURT’s back up tool. It takes as input one or more request files and produces a single
Absolute snapshot file.

The user must always specify at least one request file. Request files are specified using the -f
(for file) option. As with all of BURT’s programs, the user may mix SDDS and non-SDDS files
freely in a single execution. To specify the two request files req1 and req2, the user would enter
the command:

> burtrb -f req1 req2

The snapshot file is written to the UNIX file stdout. In most cases this means that the snapshot
file is written to the screen. The user can instruct BURT to write the snapshot file to a file,
rather than the screen, by using -o (for output) option. Extending the example above to writing
the snapshot to a file called snap, the user would enter the command:

> burtrb -f req1 req2 -o snap

Options can appear in any order. In other words, the above command is equivalent to the
following command:

> burtrb -o snap -f req1 req2

Chapter 4: Using BURT From a UNIX Prompt
burtrb

18 BURT: Back Up and Restore Tool Document Revision: 1

This ability to specify options in any order on the command line is true for all of BURT’s
programs.

The format of the snapshot files can be either SDDS compliant or not. By default, burtrb will
set the snapshot file format based on the format of the request files. Therefore, if all the request
files have the same format, burtrb will generate a snapshot file of the same format, otherwise
it will generate an SDDS snapshot file. The user always has the option of explicitly specifying
the format of the generated snapshot file by specifying either -sdds or -nosdds.

To explicitly instruct burtrb to generate an SDDS snapshot file in our example the user would
use the following command:

> burtrb -f req1 req2 -o out -sdds

Whenever creating a snapshot file, the user may augment the snapshot file with comments and/
or keywords. These comments and keywords appear in the header portion of the snapshot file.
This is done with the -c (for comments) and -k (for keywords) options. To add the comment
‘‘took this on a good day’’ with the keywords ‘‘linac best tune’’ the user would use the
following command:

> burtrb -f req1 req2 -o out -sdds -c took this on a good day -k linac best tune

The command line can get very long. Occasionally, it is so long that it cannot fit on one line.
This is not a problem for BURT. The user must always wait until the entire command line has
been typed before hitting the carriage return. Hitting the carriage return sends the command to
BURT and hitting the carriage return prematurely will only send the information typed in so
far.

By default, burtrb writes the terse version of the log file to UNIX’s stderr, which is typically
the screen. The user can instruct burtrb to increase the information in the log file by reporting
everything it is doing by specifying the -v (for verbose) option. Additionally, the user can also
instruct burtrb to place the log file into a file rather than the screen with the -l (for log file)
option. Here is an example of requesting a verbose log file sent to the file log (omitting the
comments and keywords above).

> burtrb -f req1 req2 -o out -sdds -v -l log

All the programs in BURT communicate with the IOCs using a facility called channel access
[3]. In doing so, it asks channel access to find the values of the process variables on the IOCs.
Occasionally, the medium over which channel access communicates becomes saturated with
heavy use. This slows down response times and channel access is sometimes fooled into
thinking that it cannot find a value because it has taken too long. This rarely happens, but if it
does, the user can instruct channel access to try a few more times before giving up. This is
done with the -r (for retry) option. Specifying retry levels does not slow burtrb down, it stops
as soon as it finds the value. By default, burtrb instructs channel access to try once. The -r
option instructs it how many more times to try. Here is an example of calling burtrb asking
channel access to try two more times:

> burtrb -f req1 req2 -o out -sdds -v -l log -r 2

Finally, as a diagnostic aid there is a debugging option. All non-SDDS request files are
processed by the C pre-processor to interpret any #define or #include directives that might
appear in those files. This is done before burtrb gets the files. Each non-SDDS request file is
processed by the C pre-processor which generates a new temporary file. This new temporary
file reflects the effects of all the #define and #include statements and it is actually these files
that are used as input to burtrb.

Chapter 4: Using BURT From a UNIX Prompt
burtrb

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 19

By default, burtrb removes these files at the end of its execution. However, the user can
instruct burtrb not to remove these files, presumably for later inspection, by specifying the -d
(for debug) option. When doing so, the user assumes the responsibility of removing the files.
Extending our example, the command would be:

> burtrb -f req1 req2 -o out -sdds -v -l log -r 2 -d

It is up to the EPICS system administrator that installs BURT to decide where these files are
generated. It is typically the /tmp directory. The files are named by the loginid of the user
calling burtrb and the time at which burtrb was executed.

loginid_YYMMDD_HHmmSS_I

where

loginid - loginid of user executing BURT

YY - year

MM - month

DD - day

HH - hour

mm - minute

SS - second

I - integer index [0-9]

If they are not in /tmp, contact the EPICS system administrator and have he/she look at the
#define macro PUBLICDIRECTORY in burtcommon.h.

As with all of BURT’s programs, simply typing in the name of the program without any
arguments places a quick reference usage message onto the screen.

> burtrb

usage: burtrb -f req1 {req2 ...} {-l logfile} {-o outfile} {-d} {-v} {-c ... comments ...}
{-k keyword1 ... keywordn} {-r retry_count} {-sdds or -nosdds}

where

-f req1 {req2 ...} - Request file names. This is the only switch that is not optional. You
must specify at least one request file.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages, reports of process variables that were not found) go. The default is
stderr.

-o outfile - Snapshot file name. The name of the file where the snapshot information
goes. The default is stdout.

-d - Debug. Save the files created by processing the request files with the C preproces-
sor. The default is to delete these files.

-v - Verbose. This increases the amount of information displayed in the logfile.

-c ...comments ... - Comments. Adds comments to the header of the snapshot file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header of the snapshot
file.

-r retry_count - Number of additional attempts to wait for connections. The program
will attempt to find all the process variables. If it is unsuccessful, it will try this
many more times to establish connections. The default value is 0.

Chapter 4: Using BURT From a UNIX Prompt
burtwb

20 BURT: Back Up and Restore Tool Document Revision: 1

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the input(s). If there is a heterogenous set of inputs (some
SDDS and some non-SDDS), the default is to produce and SDDS compliant
snapshot file.

2. burtwb

This is BURT’s restore tool. It takes as input one or more snapshot files and zero or more
dependency files. Depending on the contents of the snapshot files, it will produce a single
Nowrite snapshot file.

The user must always specify at least one snapshot file. Snapshot files are specified using the -f
(for file) option. As with all of BURT’s tools, the user may mix SDDS and non-SDDS files
freely in a single execution. To specify the two snapshot files snap1 and snap2, the user would
enter the command:

> burtwb -f snap1 snap2

Burtwb takes the contents of the snapshot files and changes the values on the IOCs
accordingly. Some of the values in the snapshot files are tagged as RO (Read Only) or RON
(Read Only Notify). These values are not restored to the IOCs.

Snapshot files always have a type: Absolute, Relative, or Nowrite. The type of snapshot file
instructs burtwb how to restore the values in the file to the IOCs. By default, the values in an
Absolute snapshot file replace the values on the IOCs and the values in a Relative snapshot file
are added to the values on the IOCs. The values in Nowrite snapshot files do not affect the
values on the IOCs.

The user can instruct burtwb to treat Absolute snapshot files as Relative and vice versa. In
other words, the user can instruct burtwb to treat the values in an Absolute snapshot file as
though they appeared in a Relative snapshot file, thus adding the values rather than replacing
the values, by specifying the -add (for add) option. The user can also instruct burtwb to treat
the values in a Relative snapshot file as though they appeared in an Absolute snapshot file, thus
replacing the values rather than adding them, by specifying the -replace (for replace) option.

The -add option is applied to all the Absolute snapshot files found in the command line, and
likewise the -replace option is applied to all the Relative snapshot files found in the command
line.

These are independent options, meaning the user can specify neither, both, or one of them. To
specify the -add option only:

> burtwb -f snap1 snap2 -add

Options can appear in any order. In other words, the above command is equivalent to the
following command:

> burtwb -add -f snap1 snap2

To specify the -replace option only:

> burtwb -f snap1 snap2 -replace

To specify both:

> burtwb -f snap1 snap2 -add -replace

Chapter 4: Using BURT From a UNIX Prompt
burtwb

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 21

Burtwb produces a single Nowrite snapshot file when it encounters RON values in its set of
input snapshot files, otherwise it produces no output file.

The snapshot file is written to the UNIX file stdout. In most cases this means that the snapshot
file is written to the screen. The user can instruct burtwb to write the snapshot file to the a file,
rather than the screen, by using -o (for output) option. For example, extending the example
above, and omitting the -add and -replace options, writing the snapshot to a file called
nowrite.snap, the user would enter the command:

> burtwb -f snap1 snap2 -o nowrite.snap

If there are no RON values in snap1 or snap2, then nowrite.snap will not be created.

The format of the snapshot files can be either SDDS compliant or not. By default, burtwb will
set the snapshot file format based on the format of the request files. By default, if all the request
files have the same format, burtwb will generate a snapshot file of the same format, otherwise
it will generate an SDDS snapshot file. The user always has the option of explicitly specifying
the format of the generated snapshot file by specifying either -sdds or -nosdds.

To explicitly instruct burtwb to generate an SDDS snapshot file in our example the user would
use the following command:

> burtwb -f snap1 snap2 -o nowrite.snap -sdds

Whenever creating a snapshot file, the user has the option of augmenting the snapshot file with
comments and/or keywords. These comments and keywords appear in the header portion of
the snapshot file. Using the -c (for comments) and -k (for keywords) options. Adding the
comments ‘’restored again’’ with the keywords ‘’restoring linac best tune’’ the user would use
the following command:

> burtwb -f snap1 snap2 -o nowrite.snap -sdds -c restored again -k restoring linac best
tune

Once again, we see that the command line can get very long. Sometimes it is so long that it
cannot fit on one line. This is not a problem for BURT. It is important to remember to wait until
you have typed in the entire command line before hitting the carriage return. Hitting the
carriage return sends the command to BURT and hitting the carriage return prematurely will
only send the information you have typed in so far.

By default, burtwb writes the terse version of the log file to UNIX’s stderr, which is typically
the screen. The user can instruct burtwb to increase the information in the log file by reporting
everything it is doing by specifying the -v (for verbose) option. The user can also instruct
burtwb to place the log file into a file rather than the screen with the -l (for log file) option.
Here is an example of requesting a verbose log file sent to the file log (omitting the comments
and keywords above).

> burtwb -f snap1 snap2 -o nowrite.snap -sdds -v -l log

Recall that all the programs in BURT communicate with the IOCs using a facility called
channel access. In doing so, it asks channel access to find the values of the process variables
from the IOCs. Occasionally, the medium over which channel access communicates becomes
saturated with heavy use. This slows down response times and channel access is sometimes
fooled into thinking that it cannot find a value because it has taken too long. This rarely
happens, but if it does, the user can instruct channel access to try a few more times before
giving up. This is done with the -r (for retry) option. Specifying retry levels does not slow
burtwb down, it stops as soon as it finds the value. By default, burtwb instructs channel
access to try once. The -r option tells it how many more times to try. Here is an example of
calling burtwb asking channel access to try two more times:

Chapter 4: Using BURT From a UNIX Prompt
burtwb

22 BURT: Back Up and Restore Tool Document Revision: 1

> burtwb -f snap1 snap2 -o nowrite.snap -sdds -v -l log -r 2

In addition to the snapshot files, the user can specify a set of zero or more dependency files as
input to burtwb with the -p (for predicates) option. These files specify conditions that are
tested before burtwb restores the snapshots to the IOCs. Extending our example to include
dependency files dep1, dep2, and dep3, the call to burtwb would look like this:

> burtwb -f snap1 snap2 -o nowrite.snap -sdds -v -l log -r 2 -p dep1 dep2 dep3

Finally, as a diagnostic aid there is a debugging option. Burtwb processes dependency files by
writing, compiling, and executing a C program on the fly from the conditions specified in the
dependency files. Before writing the C program, each dependency file is processed through the
C pre-processor to interpret any #define or #include directives that might appear. Each
dependency file is processed this way and each one generates a new temporary file that reflects
the effects of all the #define and #include statements. It is actually these files that burtwb uses
to write its C program.

By default, burtwb removes these temporary files as well as the C source code and the
executable program at the end of its execution. However, the user can instruct burtwb not to
remove these files, presumably for later inspection, by specifying the -d (for debug) option.
When doing so, the user assumes the responsibility of removing the files. Extending our
example to include the debug option, the call to burtwb would look like this:

> burtwb -f snap1 snap2 -o nowrite.snap -sdds -v -l log -r 2 -p dep1 dep2 dep3 -d

It is up to the EPICS system administrator that installs BURT to decide where these files are
generated. It is typically the /tmp directory. The files are named by the loginid of the user
calling burtwb and the time at which burtwb was executed.

loginid_YYMMDD_HHmmSS_I

where

loginid - loginid of user who executed BURT

YY - year

MM - month

DD - day

HH - hour

mm - minute

SS - second

I - integer index [0-9]

If they are not in /tmp, contact the EPICS system administrator and have he/she look at the
#define macro PUBLICDIRECTORY in burtcommon.h.

As with all of BURT’s programs, simply typing in the name of the program without any
arguments places a quick reference usage message onto the screen.

> burtwb

usage: burtwb -f snap1 {snap2 ...} {-l logfile} {-o outfile} {-c ... comments ...}
{-k keyword1 ... keywordn} {-d} {-v} {-p dep1 ... depn} {-r retry count} {-
add} {-replace} {-sdds or -nosdds}

where

Chapter 4: Using BURT From a UNIX Prompt
burtmath

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 23

-f snap1 {snap2 ...} - Snapshot file names. This is the only switch that is not optional.
You must specify at least one snapshot file.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages, reports of process variables that were not found) go. The default is
stderr.

-o outfile - Snapshot file name. If any of the snapshot files read only notify values, this
file is created and those values are placed there. If none of the snapshot files have
read only notify values, then no file is created. The default is stdout.

-c ... comments ... - Comments. Adds comments to the header of the snapshot file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header of the snapshot
file.

-d - Debug. Save the files created by processing the dependency files with the C prepro-
cessor. The default is to delete these files.

-v - Verbose. This increases the amount of information displayed in the logfile.

-p dep1 ... depn - Dependency file names. The names of the dependency files contain-
ing predicates to be evaluated before writing the values from the snapshot files.

-r retry count - Number of additional attempts to wait for connections. The program
will attempt to find all the process variables. If it is unsuccessful, it will try this
many more times to establish connections. The default value is 0.

-add - Absolute snapshots written as adds. All the absolute snapshots, i.e., those taken
directly off IOCs, will be written as additions to the values found on the IOCs.
The default is to write the absolute snapshots as replacement values on the IOCs.

-replace - Relative snapshots written as replacements. All the relative snapshots, i.e.,
those generated by adding or subtracting two snapshots, will be written to replace
the values on the IOCs. The default is to write the relative snapshots as additions
to the values on the IOCs.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the input(s). If there is a heterogenous set of inputs (some
SDDS and some non-SDDS), the default is to produce and SDDS compliant
snapshot file.

3. burtmath

This is BURT’s arithmetic tool. It allows the user to add or subtract the contents of two
snapshot files producing a Relative snapshot file. It also can multiply the contents of a single
snapshot file by a scalar constant producing a snapshot file of the same type. In this case, the
output snapshot file inherits its type (Absolute, Relative, or Nowrite) from the input snapshot
file.

When adding or subtracting snapshot files, only like terms will be added and subtracted. This
means that only those process variables with the same name and same number of elements that
appear in both input snapshot files will appear in the output snapshot file. For devices, only
those that have the same device name and same lineage that appear in both input snapshot files
will appear in the output snapshot file.

When supplying two snapshot files, the default operation is subtraction. Determining the
difference of two snapshot files snap1-snap2 can be done:

> burtmath snap1 snap2

Chapter 4: Using BURT From a UNIX Prompt
burtmath

24 BURT: Back Up and Restore Tool Document Revision: 1

or

> burtmath snap1 snap2 -sub

Determining the sum of two snapshot files snap1+snap2 can be done:

> burtmath snap1 snap2 -add

When supplying one snapshot file, the user must use the -mult (for multiplication) option. By
default burtmath will multiply the values in the snapshot file by the scalar constant 1. Here is
an example:

> burtmath snap1 -mult

which is equivalent to

> burtmath snap1 -mult 1

which, in turn, is equivalent to

> burtmath snap1 -mult 1.0

Optionally, the user can the -mult option and supply a scalar constant other than 1. Here is an
example multiplying the values in snap1 by the scalar constant 2.4:

> burtmath snap1 -mult 2.4

The snapshot file is written to the UNIX file stdout. In most cases this means that the snapshot
file is written to the screen. The user can instruct BURT to write the snapshot file to the a file,
rather than the screen, by using -o (for output) option. For example, extending the example
above to write the snapshot to a file called snap.sum, the user would enter the command:

> burtmath snap1 snap2 -add -o snap.sum

Options can appear in any order. In other words, the above command is equivalent to the
following command:

> burtmath snap1 snap2 -o snap.sum -add

Note when using burtmath the filenames must always appear after the word burtmath. The
filenames are not options here. Everything else on the command line is an option and may
appear in any order. This ability to specify options in any order on the command line is true for
all of BURT’s programs.

The format of the snapshot files can be either SDDS compliant or not. By default, burtmath
will set the snapshot file format based on the format of the input snapshot file(s). By default, if
all the snapshot files have the same format, burtmath will generate a snapshot file of the same
format, otherwise it will generate an SDDS snapshot file. The user always has the option of
explicitly specifying the format of the generated snapshot file by specifying either -sdds or
-nosdds.

To explicitly instruct burtmath to generate an SDDS snapshot file in our example we would
use the following command:

> burtmath snap1 snap2 -add -o snap.sum -sdds

Whenever creating a snapshot file, the user has the option of augmenting the snapshot file with
comments and/or keywords. These comments and keywords appear in the header portion of
the snapshot file. This is done by using the -c (for comments) and the -k (for keywords)
options. Adding the comment ‘’trying something goofy’’ with the keywords ‘’linac sum’’ the
user would use the following command:

> burtmath snap1 snap2 -add -o snap.sum -sdds -c trying something goofy -k linac sum

Chapter 4: Using BURT From a UNIX Prompt
burtset

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 25

Once again, we see that the command line can get very long. Sometimes it is so long that it
cannot fit on one line. This is not a problem for BURT. It is important to remember to wait until
you have typed in the entire command line before hitting the carriage return. Hitting the
carriage return sends the command to BURT and hitting the carriage return prematurely will
only send the information you have typed in so far.

By default, burtmath writes the terse version of the log file to UNIX’s stderr, which is
typically the screen. The user can instruct burtmath to increase the information in the log file
by reporting everything it is doing by specifying the -v (for verbose) option. The user can also
instruct burtmath to place the log file into a file rather than the screen with the -l (for log file)
option. Here is an example of requesting a verbose log file sent to the file log (omitting the
comments and keywords above).

> burtmath snap1 snap2 -add -o snap.sum -sdds -v -l log

As with all of BURT’s programs, simply typing in the name of the program without any
arguments places a quick reference usage message onto the screen.

> burtmath

usage: burtmath (snap1 snap2 {-add or -sub}) or (snap1 -mult m) {-l logfile}
{-o outfile} {-v} {-c ... comments ...} {-k keyword1 ... keywordn}
{-sdds or -nosdds}

where

snap1 snap2 {-add or -sub} - Adding/subtracting snapshots. Here you wish to either
add or subtract exactly two snapshot files. You must specify exactly two snapshot
files when performing either addition or subtraction. The default operation is -sub
(subtraction).

snap1 -mult m - Multiplying snapshots. Here you wish to multiply all the values in
snap1 by multiplication factor m.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages, reports of process variables that were not found) go. The default is
stderr.

-o outfile - Result file name. The name of the file where the resulting information goes.
The default is stdout.

-v - Verbose. This increases the amount of information displayed in the logfile.

-c ... comments ... - Comments. Adds comments to the header of the result file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header of the result file.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the input(s). If there is a heterogenous set of inputs (some
SDDS and some non-SDDS), the default is to produce and SDDS compliant
snapshot file.

4. burtset

This is BURT’s set operation program. It performs set operations (union, intersection, and
difference) on a pair of request files and outputs a request file.

The user must specify exactly two request files. This is done with the -f (for file) option. As
with all of BURT’s programs, the user may mix SDDS and non-SDDS files freely in a single
execution. To specify the two request files req1 and req2, the user would enter the command:

Chapter 4: Using BURT From a UNIX Prompt
burtset

26 BURT: Back Up and Restore Tool Document Revision: 1

> burtset -f req1 req2

The default set operation is to perform a union of the two files. That is, produce a request file
that has those process variables and devices that appear in either input request file. The above
command is therefore equivalent to the command:

> burtset -f req1 req2 -union

Options can appear in any order. In other words, the above command is equivalent to the
following command:

> burtset -union -f req1 req2

The result of a union operation is that all the names that appear in both of the input files appear
in the output file. If a process variable or device appears in exactly one file, it will appear in the
output file. If a process variable or device appears in both files, it will appear once in the output
file. In this case it will be tagged RON if it is RON in either source file. If it is not RON in
either file, it will be tagged RO if it is RO in either source file. Otherwise it will not be tagged
at all. If the process variable or device appears in both files with a different number of elements
in both, burtset arbitrarily chooses one of the number of element requests and propagates that
to the output file.

The user may request an intersection be taken. That is, produce a request file that has those
process variables and devices found in both input request files. To request an intersection of the
request files req1 and req2:

> burtset -f req1 req2 -inter

This intersection match is done on name only, it ignores any tagging or number of requested
elements. It propagates tagging based on maximizing severity. In other words, if there is a
match then the tag of the output will be RON if either source is RON. If neither is RON, then
the tag of the output will be RO if either is RO. Otherwise, the output will not be tagged.
Additionally, in the case of the match, burtset arbitrarily chooses the number of requested for
the output.

The user may request a difference be taken. That is, produce a request file that has those
process variables and devices found in req1 but not req2. To request a difference req1-req2:

> burtset -f req1 req2 -diff

Matching is done with respect to name only, i.e.,ignoring tagging or number of requested. As
the operation implies, the output file will be a subset of the first request file.

Independent of the chosen set operation, the resulting request file is written to the UNIX file
stdout. In most cases this means that the request file is written to the screen. The user can
instruct BURT to write the request file to the a file, rather than the screen, by using -o (for
output) option. Extending the example above to write the request to a file called union.req, the
user would enter the command:

> burtset -f req1 req2 -union -o union.req

The format of the output request file can be either SDDS compliant or not. By default, burtset
will set the output request file format based on the format of the input request files. By default,
if all the input request files have the same format, burtset will generate a request file of the
same format, otherwise it will generate an SDDS request file. The user always has the option
of explicitly specifying the format of the generated request file by specifying either -sdds or
-nosdds.

To explicitly instruct burtset to generate an SDDS request file in our example the user would
use the following command:

Chapter 4: Using BURT From a UNIX Prompt
burtset

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 27

> burtset -f req1 req2 -union -o union.req -sdds

By default, burtset writes the terse version of the log file to UNIX’s stderr, which is typically
the screen. The user can instruct burtset to increase the information in the log file by reporting
everything it is doing by specifying the -v (for verbose) option. Additionally, the user can also
instruct burtrb to place the log file into a file rather than the screen with the -l (for log file)
option. Here is an example of requesting a verbose log file sent to the file log.

> burtset -f req1 req2 -union -o union.req -sdds -v -l log

Finally, as a diagnostic aid there is a debugging option. All non-SDDS request files are
processed by the C pre-processor to interpret any #define or #include directives that might
appear in those files. This is done before burtset gets the files. Each non-SDDS request file is
processed by the C pre-processor which generates a new temporary file. This new temporary
file reflects the effects of all the #define and #include statements and it is actually these files
that are used as input to burtset.

By default, burtset removes these files at the end of its execution. However, the user can
instruct burtset not to remove these files, presumably for later inspection, by specifying the -d
(for debug) option. When doing so, the user assumes the responsibility of removing the files.
Extending our example, the command would be:

> burtset -f req1 req2 -union -o union.req -sdds -v -l log -d

It is up to the EPICS system administrator that installs BURT to decide where these files are
generated. It is typically the /tmp directory. The files are named by the loginid of the user
calling burtset and the time at which burtset was executed.

loginid_YYMMDD_HHmmSS_I

where

loginid - loginid of user who executed BURT

YY - year

MM - month

DD - day

HH - hour

mm - minute

SS - second

I - integer index [0-9]

If they are not in /tmp, contact the EPICS system administrator and have he/she look at the
#define macro PUBLICDIRECTORY in burtcommon.h.

As with all of BURT’s programs, simply typing in the name of the program without any
arguments places a quick reference usage message onto the screen.

> burtset

usage: burtset -f req1 req2 {-union or -inter or -diff} {-l logfile} {-o outfile} {-d} {-v}
{-sdds or -nosdds}

where

-f req1 req2 - Request filenames. This is the only switch that is not optional. You must
specify at least two request files.

-union or -inter or -diff - Set operation. The set operation (union, intersection, or dif-
ference) to be performed on the two request files. The default is union.

Chapter 4: Using BURT From a UNIX Prompt
burtconvertsnap

28 BURT: Back Up and Restore Tool Document Revision: 1

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages) go. The default is stderr.

-o outfile - Request file name. The name of the file where the result of the set operation
goes. The default is stdout.

-d - Debug. Save the files created by processing the request files with the C preproces-
sor. The default is to delete these files.

-v - Verbose. This increases the amount of information displayed in the logfile.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the inputs. If there is a heterogenous set of inputs (one
SDDS and the other non-SDDS), the default is to produce and SDDS compliant
snapshot file.

5. burtconvertsnap

This is BURT’s snapshot conversion tool. It takes as input one snapshot file and produces a
single snapshot file. Its purpose is to convert SDDS snapshot files to non-SDDS snapshot files
and vice versa.

Converting snapshot files in this way can alter the informational contents (not just the syntax)
of the files. Recall that SDDS snapshot files may have devices in them while non-SDDS
snapshot files cannot. This poses a problem for burtconvertsnap when it is asked to convert
an SDDS snapshot file containing devices to a non-SDDS snapshot file. Burtconvertsnap
solves this problem by translating all the devices in the SDDS snapshot file into their process
variable constituents. It then places the process variable name along with its associated value,
as opposed to the device name and its value, into the output non-SDDS snapshot file.
Additionally, the lineage of those devices found in the SDDS snapshot file is lost as well.

The informational difference between input and output snapshot files only occurs when
converting SDDS snapshot files containing devices to non-SDDS snapshot files. Converting
non-SDDS snapshot files or SDDS snapshot files without devices always produces
informationally equivalent files.

The user must always specify exactly one snapshot file as input. To specify the snapshot file
snap.source the user would enter the following command:

> burtconvertsnap snap.source

By default, burtconvertsnap will produce a snapshot file with a different format than the input
file. The user has the option of explicitly specifying the type of snapshot file should be
produced by using either the -sdds or -nosdds option. Extending the example above to instruct
burtconvertsnap to produce an SDDS snapshot file, the user would enter the command:

> burtconvertsnap snap.source -sdds

The converted snapshot file is written to the UNIX file stdout. In most cases this means that the
snapshot file is written to the screen. The user can instruct BURT to write the snapshot file to a
file, rather than the screen, by using the -o (for output) option. Extending the example above,
writing the snapshot to a file called snap.converted the user would enter the command:

> burtconvertsnap snap.source -sdds -o snap.converted

Options can appear in any order. In other words, the above command is equivalent to the
following command:

Chapter 4: Using BURT From a UNIX Prompt
burtconvertsnap

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 29

> burtconvertsnap snap.source -o snap.converted -sdds

Note that the specification of the input snapshot file is not an option. Only those command line
arguments that begin with ‘‘-’’ are considered options. For that reason, the name of the input
snapshot file must always appear immediately after the command burtconvertsnap.

By default, burtconvertsnap writes the terse version of the log file to UNIX’s stderr, which is
typically the screen. The user can instruct burtconvertsnap to increase the information in the
log file by reporting everything it is doing by specifying the -v (for verbose) option.
Additionally, the user can also instruct burtconvertsnap to place the log file into a file rather
than the screen with the -l (for log file) option. Here is an example requesting a verbose log file
sent to the file log.

> burtconvertsnap snap.source -o snap.converted -sdds -v -l log

As with all of BURT’s programs, simply typing in the name of the program without any
arguments places a quick reference usage message onto the screen.

> burtconvertsnap

usage: burtconvertsnap snap {-l logfile} {-o outfile} {-v} {-sdds or -nosdds}

where

snap - Snapshot filename. This is the only switch that is not optional. You must specify
exactly one snapshot file. This is the snapshot file that will be converted.

-l logfile - Log filename. The name of the file where all logging messages (e.g. error
messages) go. The default is stderr.

-o outfile - Output snapshot filename. This is where the newly generated converted
snapshot file will be placed. The default is stdout.

-v - Verbose. This increases the amount of information displayed in the logfile.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to pro-
duce whatever the input snapshot file is not.

Chapter 4: Using BURT From a UNIX Prompt
burtconvertsnap

30 BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 31

Chapter 5: Using BURT From Its GUI

BURT can be executed in two ways; from a UNIX prompt passing it arguments on the
command line or from its Graphic User Interface (GUI). In this chapter we describe how to run
BURT from its GUI. We assume that the reader is already familiar with all of BURT’s
terminology explained above.

1. Main

Below is BURT’s top level GUI window. It is created when users enter the command
burtgooey at a UNIX prompt. It is from this window that users invoke BURT’s functions as
well as exiting the BURT GUI. Each of the buttons on this window (with the exception of the
‘‘Done’’ button) creates other windows that provide access to BURT’s programs, e.g., burtrb,
burtwb, etc.

The ‘‘Backup’’ button creates a window that provides access to burtrb while the ‘‘Restore’’
button provides access to burtwb. The ‘‘Add/Sub’’ and ‘‘Mult’’ buttons each create their own
window yet each provides access to burtmath. The ‘‘Set’’ button creates a window that
provides access to burtset. The ‘‘Done’’ button terminates the GUI session.

Chapter 5: Using BURT From Its GUI
Backup

32 BURT: Back Up and Restore Tool Document Revision: 1

The windows that each button creates are nothing more than a convenient way to construct a
UNIX command that calls one of BURT’s programs. Operating BURT from its GUI is no more
powerful than operating it from a UNIX prompt, and further, understanding the command line
options for executing BURT from a UNIX prompt will greatly enhance a user’s ability and
understanding in executing BURT from its GUI. This will become more obvious as we explore
each of the windows in turn.

2. Backup

The window below is created when the ‘‘Backup’’ button is pressed in the top level window.
The purpose of this window is to construct a burtrb command and pass it on to UNIX for
execution.

At the top of this window is a box. It is the list of request files that are to be supplied to burtrb.
Initially the list is empty. The five buttons immediately below the list, starting with ‘‘Request
Files ...’’ and ending with ‘‘Print Selected’’ all pertain to that list. Users are not allowed to type
in the box. Information is added/deleted to/from the list by using the buttons beneath it.

Request files are added to the list using the first button, ‘‘Request Files ...’’. This button creates
a file selection window, exactly like the one below, from which request files can be selected
and added.

Chapter 5: Using BURT From Its GUI
Backup

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 33

Files that have been selected with this window are added to the list. When a file is added to the
list, it is added with its full UNIX pathname. Once a file appears in the list, attempting to add it
again will have no effect. In other words, a file may appear at most one time in the list.

Here is an example with a list that has a few members in it.

Note that when the number of files that appear in the list exceeds the size of the box a scrollbar
automatically appears to the right.

It is possible to select particular files from the list. This is done by positioning the cursor over
the desired file and clicking the left mouse button. When a file is selected it becomes
highlighted. Clicking the left mouse button on a different file deselects the original file and
selects the new file. To select more than one file, click the left mouse over the first file to select
it. To select the additional files, click the left mouse button over them while holding down the
control key on the keyboard. Here is an example with three files selected.

Chapter 5: Using BURT From Its GUI
Backup

34 BURT: Back Up and Restore Tool Document Revision: 1

File selection pertains to the buttons ‘‘View Selected ...’’, ‘‘Remove Selected’’, and ‘‘Print
Selected’’ only. They do not effect which request files will be used in the backup. All files that
appear in the list will be used in the backup, whether they are selected or not.

Adding a file to this list does not insure that it is a request file. BURT does not check that each
file brought into the list is a valid request file. Users are therefore provided a facility to inspect
any of the files that appear in the list with the ‘‘View Selected ...’’ button. Pressing this button
will create a new window displaying the selected files. Only ASCII files, i.e., files containing
only printable characters, will be displayed. The ‘‘Print Selected’’ acts just like the ‘‘View
Selected ...’’ button except that the files are sent to the printer instead of appearing in a newly
created window. Files may be removed from the list using either the ‘‘Remove Selected’’ or the
‘‘Clear All’’ buttons.

Recall that BURT’s backup program generates a snapshot file. The user must always supply a
snapshot filename. When the backup window is created, a default snapshot filename is
supplied in the text field labeled ‘‘Snapshot Filename:’’. The user may change this to a non-
NULL filename. The next two text fields, labeled ‘‘Comments:’’ and ‘‘Keywords:’’, are where
the user may specify any optional comments and/or keywords he would like to augment the
snapshot file with.

The user has the option of specifying the format of the generated snapshot file with the panel of
radio buttons labeled ‘‘No Specification’’, ‘‘SDDS’’, and ‘‘non-SDDS’’. Selecting ‘‘No
Specification’’ will generate a snapshot file that is of the same type as the request file(s). If
there is more than one request file and they are of different types, an SDDS snapshot file will
be generated.

The top portion of the window describes how to configure a backup. The bottom row of
buttons (with the exception of the ‘‘Done’’ button) pertains to executing the backup. Once the
appropriate files have placed in the request file list, a snapshot filename has been provided, any
comments and/or keywords have been provided, and a snapshot file format has been selected
the user is ready to perform the backup. This is done with the ‘‘Backup’’ button.

Chapter 5: Using BURT From Its GUI
Restore

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 35

Next to the ‘‘Backup’’ button is a status indicator, it is not a button. Initially it is green and
displays the word ‘‘OK’’. Pressing the ‘‘Backup’’ button initiates the backup process. During
that process the status indicator turns blue. At the end of the process the status indicator returns
to green and displays the word ‘‘OK’’ if everything went all right. If something went wrong,
the status indicator turns red and displays the words ‘‘NOT OK’’.

Recall that all BURT operations generate a log. To view this log, after executing a backup and
receiving a ‘‘NOT OK’’ status for example, the user may press the ‘‘View Log ...’’ button. This
will generate a new window containing the verbose version of BURT’s backup log file. The log
may be printed using the ‘‘Print Log’’ button. A new log is generated each time the ‘‘Backup’’
button is pressed, thus destroying the previous log.

At the end of the backup operations, the user may press the ‘‘Done’’ button which removes the
backup window from the screen.

3. Restore

The window below is created when the ‘‘Restore’’ button is pressed in the top level window.
The purpose of this window is to construct a burtwb command and pass it on to UNIX for
execution.

At the top of this window is a box. It is the list of snapshot files that are to be supplied to
burtwb. Initially the list is empty. The five buttons immediately below the list, starting with
‘‘Snapshot Files ...’’ and ending with ‘‘Print Selected’’ all pertain to that list. Users are not
allowed to type in the list. Information is added/deleted to/from the list using the buttons
beneath it.

Snapshot files are added to the list using the first button, ‘‘Snapshot Files ...’’. This button
creates a file selection window, exactly like the one below, from which snapshot files can be
selected and added.

Chapter 5: Using BURT From Its GUI
Restore

36 BURT: Back Up and Restore Tool Document Revision: 1

Files that have been selected with this window are added to the list. When a file is added to the
list, it is added with its full UNIX pathname. Once a file appears in the list, attempting to add it
again will have no effect. In other words, a file may appear at most one time in the list.

Here is an example with a list that has a few members in it.

Note that when the number of files that appear in the list exceeds the size of the box a scrollbar
automatically appears to the right.

It is possible to select particular files from the list. This is done by positioning the cursor over
the desired file and clicking the left mouse button. When a file is selected it becomes
highlighted. Clicking the left mouse button on a different file deselects the original file and
selects the new file. To select more than one file, click the left mouse over the first file to select
it. To select the additional files, click the left mouse button over them while holding down the
control key on the keyboard. Here is an example with three files selected.

Chapter 5: Using BURT From Its GUI
Restore

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 37

File selection pertains to the buttons ‘‘View Selected ...’’, ‘‘Remove Selected’’, and ‘‘Print
Selected’’ only. It does not effect which snapshot files will be used in the restoration. All the
files that appear in the list will be used in the restoration, whether they are selected or not.

Adding a file to this list does not insure that it is a snapshot file. BURT does not check that each
file brought into the list is a valid snapshot file. Users are therefore provided a facility to
inspect any of the files that appear in the list with the ‘‘View Selected ...’’ button. Pressing this
button will generate a new window displaying the selected files. Only ASCII files, i.e., files
containing only printable characters, will be displayed. The ‘‘Print Selected’’ button acts just
like the ‘‘View Selected ...’’ button except that the files are sent to the printer instead of
appearing in a newly created window. Files may be removed from the list using either the
‘‘Remove Selected’’ or the ‘‘Clear All’’ buttons.

The next two switches instruct BURT how to restore the different types of snapshot files it
encounters in the list. Enabling the first switch, labeled ‘‘Write Absolute Snapshots as
Additions’’, instructs BURT to restore Absolute snapshots as though they were Relative
snapshots. Enabling the second switch, labeled ‘‘Write Relative Snapshots as Replacements’’,
instructs BURT to restore Relative snapshots as though they were Absolute (see Chapter 3
Section 2.1).

Recall that BURT’s restoration program occasionally generates a Nowrite snapshot file. This
happens whenever there are RON values on any of the input snapshot files. The user has the
option of specifying the format of the generated snapshot file with the panel of radio buttons
labeled ‘‘No Specification’’, ‘‘SDDS’’, and ‘‘non-SDDS’’. Selecting ‘‘No Specification’’ will
generate a snapshot file that is of the same type as the input snapshot file(s). If there is more
than one input snapshot file and they are of different types, an SDDS snapshot file will be
generated.

The generated snapshot is not placed into a file. Rather, it appears in a window as a result of
starting the restoration process. If there are no RON values in the input snapshot files, then no
such window is generated. Below is an example of a window that is generated as a result of
executing a restoration that did contain RON values. The format of the generated snapshot is
non-SDDS.

Chapter 5: Using BURT From Its GUI
Add/Sub

38 BURT: Back Up and Restore Tool Document Revision: 1

This window is dismissed with the ‘‘Done’’ button. The contents of the window may be
printed with the ‘‘Print’’ button.

The preceding discussion of the top portion of the restoration window describes how to
configure a restoration. The bottom row of buttons (with the exception of the ‘‘Done’’ button)
pertains to executing the restoration. Once the appropriate files been placed in the snapshot file
list, how to write the snapshot files has been determined, and the format of the potentially
generated snapshot has been set the user is ready to perform the restoration. This is done with
the ‘‘Restore’’ button.

Next to the ‘‘Restore’’ button is a status indicator, it is not a button. Initially it is green and
displays the word ‘‘OK’’. Pressing the ‘‘Restore’’ button initiates the restoration process.
During that process the status indicator turns blue. At the end of the process the status indicator
returns to green and displays the word ‘‘OK’’ if everything went all right. If something went
wrong, the status indicator turns red and displays the words ‘‘NOT OK’’.

Recall that all BURT operations generate a log. To view this log, after executing a restoration
and receiving a ‘‘NOT OK’’ status for example, the users may press the ‘‘View Log ...’’ button.
This will generate a new window containing the verbose version of BURT’s restoration log.
The log may be printed using the ‘‘Print Log’’ button. A new log is generated each time the
‘‘Restore’’ button is pressed, thus destroying the previous log.

At the end of the restore operations, the user may press the ‘‘Done’’ button which removes the
restore window from the screen.

4. Add/Sub

The window below is created when the ‘‘Add/Sub’’ button is pressed in the top level window.
The purpose of this window is to construct a burtmath command for the addition or
subtraction of snapshot files and pass it on to UNIX for execution.

Chapter 5: Using BURT From Its GUI
Add/Sub

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 39

Both the addition and subtraction operations take exactly two snapshot files as input. The name
of these two snapshot files must appear in the top two text fields. Users may select snapshot
files by using the button labeled ‘‘Snapshot Files ...’’. Two such buttons have been provided,
one for each snapshot file. These buttons create a file selection window from which users may
select a snapshot file. The file selection window for the first request file appears below.

Selecting a snapshot file places the selected file into the appropriate text field. Below is an
example of the Addition/Subtraction window with both snapshot files specified.

Chapter 5: Using BURT From Its GUI
Add/Sub

40 BURT: Back Up and Restore Tool Document Revision: 1

Placing filenames into these text fields does not insure that they are valid snapshot files. BURT
does not check that each is a valid snapshot file. Users are therefore provided a facility to
inspect the files with the ‘‘View ...’’ buttons. Pressing this button generates a window in which
the file appears. Only ASCII files, i.e., files containing only printable characters, can be viewed
this way. The ‘‘Print’’ button acts just like the ‘‘View ...’’ button except that the files are sent to
the printer rather than appearing in a newly created window.

The operation, either addition or subtraction, is selected by the panel of radio buttons, labeled
‘‘Addition’’ and ‘‘Subtraction’’, that appear between the two snapshot file names.

Recall that BURT’s arithmetic program generates a snapshot file. The user must always supply
a snapshot filename. When the Addition/Subtraction window is created, a default snapshot
filename is supplied in the text field labeled ‘‘Snapshot Filename:’’. The next two fields,
labeled ‘‘Comments:’’ and ‘‘Keywords:’’, are where the user may specify any optional
comments and/or keywords he would like to augment the snapshot file with.

The user has the option of specifying the format of the generated snapshot file with the panel of
radio buttons labeled ‘‘No Specification’’, ‘‘SDDS’’, and ‘‘non-SDDS’’. Selecting ‘‘No
Specification’’ will generate a snapshot file that is of the same type as the two input snapshot
files if they are of the same type. If they are not the same type, an SDDS snapshot file will be
generated.

The preceding discussion of the top portion of the window describes how to configure an
addition or subtraction. The bottom row of buttons (with the exception of the ‘‘Done’’ button)
pertains to executing the addition or subtraction. Once the two snapshot files have been
selected, the operation has been chosen, an output snapshot filename has been chosen, any
comments and/or keywords have been provided, and an output snapshot file format has been
selected the user is ready to perform the arithmetic operation. This is done with the ‘‘Go’’
button.

Chapter 5: Using BURT From Its GUI
Mult

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 41

Next to the ‘‘Go’’ button is a status indicator, it is not a button. Initially it is green and displays
the word ‘‘OK’’. Pressing the ‘‘Go’’ button initiates the arithmetic operation. During that
operation the status indicator turns blue. At the end of the operation the status indicator returns
to green and displays the word ‘‘OK’’ if everything went all right. If something went wrong,
the status indicator turns red and displays the words ‘‘NOT OK’’.

Recall that all BURT operations generate a log. To view this log, after performing an operation
and receiving a ‘‘NOT OK’’ status for example, the user may press the ‘‘View Log ...’’ button.
This will generate a window containing the verbose version of BURT’s arithmetic operation
log. The log may be printed using the ‘‘Print Log’’ button. A new log is generated each time
the ‘’Go’’ button is pressed, thus destroying the previous log.

At the end of the addition and/or subtraction operations, the user may press the ‘‘Done’’ button
to remove the addition/subtraction window from the screen.

5. Mult

The window below is created when the ‘‘Mult’’ button is pressed in the top level window. The
purpose of this window is to construct a burtmath command for the multiplication of snapshot
files by a scalar constant and passing it on to UNIX for execution.

The multiplication operation takes exactly one snapshot file as input. The name of this
snapshot file must appear in the top text field. Users may select snapshot files by using the
button labeled ‘‘Snapshot Files ...’’. This button creates a file selection window from which
users may select a snapshot file, just like the one below.

Chapter 5: Using BURT From Its GUI
Mult

42 BURT: Back Up and Restore Tool Document Revision: 1

Selecting a snapshot file places the selected file into the text field. Below is an example with a
snapshot file specified.

Placing a filename into the text field does not insure that it is a valid snapshot file. BURT does
not check that it is a valid snapshot file. Users are therefore provided a facility to inspect the
file with the ‘‘View ...’’ button. Pressing this button generates a window in which the file
appears. Only ASCII files, i.e., files containing only printable characters, can be viewed this
way. The ‘‘Print’’ button acts just like the ‘‘View ...’’ button except that the files are sent to the
printer rather than appearing in a newly created window.

The next text field, labeled ‘‘Scalar Multiplier’’ is where the user specifies the scalar constant
to multiply the snapshot file by. By default this value is 1.0.

Recall that BURT’s arithmetic program generates a snapshot file. The user must always supply
a snapshot filename. When the Scalar Multiplication window is created, a default snapshot
filename is supplied in the text field labeled ‘‘Snapshot Filename:’’. The user may change this

Chapter 5: Using BURT From Its GUI
Set

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 43

filename. The next two fields, labeled ‘‘Comments:’’ and ‘‘Keywords:’’, are where the user
may specify any optional comments and/or keywords he would like to augment the snapshot
file with.

The user has the option of specifying the format of the generated snapshot file with the panel of
radio buttons labeled ‘‘No Specification’’, ‘‘SDDS’’, and ‘‘non-SDDS’’. Selecting ‘‘No
Specification’’ will generate a snapshot file that is of the same type as the input snapshot file.

The preceding discussion of the top portion of the window describes how to configure scalar
multiplication. The bottom row of buttons (with the exception of the ‘‘Done’’ button) pertains
to executing scalar multiplication. Once the input snapshot file has been selected, the scalar
constant specified, an output snapshot filename has been chosen, any comments and/or
keywords have been provided, and an output snapshot file format has been selected the user is
ready to perform the arithmetic operation. This is done with the ‘‘Go’’ button.

Next to the ‘‘Go’’ button is a status indicator, it is not a button. Initially it is green and displays
the word ‘‘OK’’. Pressing the ‘‘Go’’ button initiates the arithmetic operation. During that
operation the status indicator turns blue. At the end of the operation the status indicator returns
to green and displays the word ‘‘OK’’ if everything went all right. If something went wrong,
the status indicator turns red and displays the words ‘‘NOT OK’’.

Recall that all BURT operations generate a log. To view this log, after performing an operation
and receiving a ‘‘NOT OK’’ status for example, the user presses the ‘‘View Log ...’’ button.
This will generate a new window containing the verbose version of BURT’s arithmetic
operation log. The log may be printed using the ‘‘Print Log’’ button. A new log is generated
each time the ‘’Go’’ button is pressed, thus destroying the previous log.

At the end of the scalar multiplication operations, the user may press the ‘‘Done’’ button which
removes the scalar multiplication window from the screen.

6. Set

The window below is created when the ‘‘Set’’ button is pressed in the top level window. The
purpose of this window is to construct a burtset command and pass it on to UNIX for
execution.

Chapter 5: Using BURT From Its GUI
Set

44 BURT: Back Up and Restore Tool Document Revision: 1

The set operation takes exactly two request files as input. The name of these two request files
must appear in the top two text fields. Users may select request files by using the button labeled
‘‘Request Files ...’’. Two such buttons have been provided, one for each request file. These
buttons create a file selection window from which users may select a request file. The file
selection window for the first request file appears below.

Selecting a request file places the selected file into the appropriate text field. Below is an
example of the Set window with both request files specified.

Placing filenames into these text fields does not insure that they are valid request files. BURT
does not check that each file is a valid request file. Users are therefore provided a facility to
inspect the files with the ‘‘View ...’’ buttons. Pressing this button generates a window in which
the file appears. Only ASCII files, i.e., files containing only printable characters, can be viewed
this way. The ‘‘Print’’ button acts just like the ‘‘View ...’’ button except that the files are sent to
the printer rather than appearing in a newly created window.

The set operation is selected by the panel of radio buttons, labeled ‘‘Union’’, ‘‘Intersection’’,
and ‘‘Difference’’, that appear between the two request filenames.

Recall that BURT’s set program generates a request file. The user must always supply a request
filename. When the Set window is created, a default request filename is supplied in the text
field beneath the ‘‘=’’ sign. The user may change this filename.

Chapter 5: Using BURT From Its GUI
Set

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 45

The user has the option of specifying the format of the generated request file with the panel of
radio buttons labeled ‘‘No Specification’’, ‘‘SDDS’’, and ‘‘non-SDDS’’. Selecting ‘‘No
Specification’’ will generate a request file that is of the same type as the two input request files
if they are of the same type. If they are not the same type, an SDDS request file will be
generated.

The preceding discussion of the top portion of the window describes how to configure a set
operation. The bottom row of buttons (with the exception of the ‘‘Done’’ button) pertains to
executing the set operation. Once the two request files have been selected, the operation
chosen, an output snapshot filename has been chosen, any comments and/or keywords have
been provided, and an output request file format has been selected the user is ready to perform
the set operation. This is done with the ‘‘Go’’ button.

Next to the ‘‘Go’’ button is a status indicator, it is not a button. Initially it is green and displays
the word ‘‘OK’’. Pressing the ‘‘Go’’ button initiates the set operation. During that operation the
status indicator turns blue. At the end of the operation the status indicator returns to green and
displays the word ‘‘OK’’ if everything went all right. If something went wrong, the status
indicator turns red and displays the words ‘‘NOT OK’’.

Recall that all BURT operations generate a log. To view this log, after performing an operation
and receiving a ‘‘NOT OK’’ status for example, the user presses the ‘‘View Log ...’’ button.
This will generate a new window containing the verbose version of BURT’s set operation log.
The log may be printed using the ‘‘Print Log’’ button. A new log is generated each time the
‘’Go’’ button is pressed, thus destroying the previous log.

At the end of the set operations, the user presses the ‘‘Done’’ button which removes the set
window from the screen.

Chapter 5: Using BURT From Its GUI
Set

46 BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 47

Chapter 6: Creating Your Own Snapshot Files

It was generally intended that users of BURT create their own request and dependency files
and that BURT would create all the snapshot files. After all, BURT is a backup and restore
tool, so it is not surprising to expect that a snapshot file that is being restored is the result of
some previous backup, and therefore created by BURT. However, we recognize that this is not
always the case and that it is possible to use BURT to write values, in the form of snapshot
files, that were not the result of a previous backup, but rather the output from some program
outside BURT’s suite of programs. It is for this reason that we describe the steps necessary to
facilitate those sophisticated users who wish to create their own snapshot files.

We provide this description with the following warning; users wishing to create their own
snapshot files should only create SDDS snapshot files. Further, continued support for those
users wishing to create their own snapshot files will come in the form of a C header file called
burtpublic.h (explained below in section 1). Users who create their own non-SDDS snapshot
files do so at their own risk. We provide no support for those users that choose to create their
own non-SDDS snapshot files, and further, we reserve the right to change any or all of the
syntax/format of non-SDDS snapshot files without any consideration for such users.

1. Getting Started - Including burtpublic.h

Users wishing to create their own snapshot files will be affected by any changes made in the
format and/or syntax of those files, or changes in the names of the SDDS columns and
parameters of those files. In order to minimize the users’ grief caused by these changes, we
made a portion of BURT’s internal names available to the user community in the file
burtpublic.h, which presumably can be found with the rest of BURT’s source code. Contact
your EPICS system administrator to find out where this file resides.

burtpublic.h contains all the column and parameter names as well as some other standard
values all in the form of #define macros. Users wishing to create their own SDDS snapshot
files are best shielded from any changes to these names and standard values by producing these

Chapter 6: Creating Your Own Snapshot Files
Parameters

48 BURT: Back Up and Restore Tool Document Revision: 1

files with a C program and using the #include facility to include burtpublic.h. The intention
here is that, although we may change the column and parameter names found in SDDS
snapshot files, it is unlikely that we will ever change the #define’d names.

2. Parameters

Snapshot files are comprised of two parts: the header section that identifies who took the
snapshot, when the snapshot was taken, and what type of snapshot it is, and the data section
where the process variable and device names along with their associated values appear. In
SDDS snapshot files, the header section appears at the top of the file in the form of SDDS fixed
parameters. Below is a table describing all the parameters BURT looks for in a snapshot file.
All parameters are strings.

Parameter Names are the names of the parameters as they currently (with respect to the
creation of this document) appear. These names may change over time. Public Names are the
names of the parameters as they appear in burtpublic.h, names that are far less likely to change
and users are therefore recommended to use these names instead of the ones found in
Parameter Names.

All the parameters are strings and are defined as fixed values that are intended to pertain to the
entire snapshot file. Note that all but one of the parameters are optional. The only required
parameter is TYPEHEADERSTRING (SnapType). However, when supplying an optional
parameter, the user must be very careful to format its value carefully. Examples of how to
format each of the parameters correctly appears in the example in section 4.

The values of the parameters KEYWORDSHEADERSTING (BurtKeywords),
COMMENTSHEADERSTRING (BurtComments), and TYPEHEADERSTRING (SnapType)
are specified directly by the user. The values of the other parameters, TIMEHEADERSTRING
(TimeStamp), LOGINHEADERSTRING (LoginID), EFFUIDHEADERSTRING
(EffectiveUID), and GROUPIDHEADERSTRING (GroupID) are also supplied by the user,
but only after making calls to operating system, i.e., UNIX. This is illustrated by the example
in section 4.

Public Names
Parameter

Names
Required /
Optional Values Default Values

TIMEHEADERSTRING TimeStamp optional when snapshot was pro-
duced

1/1/70 00:00 GMT

LOGINHEADERSTRING LoginId optional loginid and realworld
name of user producing
snapshot

UNKNOWNLOGINID
(UNKNOWNREAL-
WORLDNAME)

EFFUIDHEADERSTRING EffectiveUID optional effective UID of user
producing snapshot

UNKNOWN

GROUPIDHEADERSTRING GroupID optional group ID of user pro-
ducing snapshot

UNKNOWN

KEYWORDSHEADERSTRING BurtKeywords optional user supplied keywords empty string

COMMENTSHEADERSTRING BurtComments optional user supplied comments empty string

TYPEHEADERSTRING SnapType required type of snapshot,

ABSOLUTESTRING,
RELATIVESTRING,
or NOWRITESTRING

Chapter 6: Creating Your Own Snapshot Files
Columns

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 49

3. Columns

The second portion of snapshot files is the data. In SDDS snapshot files the data appears as a
single SDDS table. Below is a table describing the columns in that SDDS snapshot table.

Similar to the parameter names, Column Names are the names of the columns as they
currently appear in the SDDS snapshot files. These names may change over time. Public
Names are the names of the columns as they appear in burtpublic.h, names that are far less
likely to change and users are therefore recommended to use these names instead of the ones
found in Column Names.

Note that all but three of the columns are required. Additionally, values of certain columns are
dictated by values in other columns. For example, NELEM_COL (Count) must be 0 for
devices and the columns LINEAGE_COL (Lineage), READMSG_COL (BackupMsg), and
WRITEMSG_COL (RestoreMsg) must all be DEFAULT_STRING (currently defined as ‘‘-’’
in burtpublic.h) for process variables.

4. Example

In this section we present an example C program, snap.c, and that generates an SDDS snapshot
file. In doing so, it does not leave out any of the optional columns or parameters. It points out
which UNIX header files to include and how to retrieve and correctly format values from
UNIX. It also illustrates how to correctly use the #define’d values from burtpublic.h to create
the parameter and column names as well as how to define the lineage for devices and specify
missing values in vectors. The program is presented with commentary. This program (without
commentary) as well as its associated makefile and output file all appear as appendices to this
document.

Public Names
Column
Names SDDS Types

Required/
Optional Contents

Default
Values

Default
Meanings

NAME_COL ControlName SDDS_STRING required PV or Device name

TYPE_COL ControlType SDDS_STRING required type of entity,
PVSTRING or
DEVSTRING

LINEAGE_COL Lineage SDDS_STRING required lineage of composite
devices, for devices
only, DEFAULT-
STRING for pvars

NELEM_COL Count SDDS_LONG required number of elements, 1
for devices

VAL_COL ValueString SDDS_STRING required value

MODE_COL ControlMode SDDS_STRING optional read only tag,

DERAULTSTRING,

READONLYSTRING,
or READONLYNOTI-
FYSTRING

DEFAULT-
STRING

restore to IOC

READMSG_COL BackupMsg SDDS_STRING optional device read msg,
DEFAULTSTRING for
pvars

DEFAULT-
STRING

DEFAULT-
READMSG

WRITEMSG_COL RestoreMsg SDDS_STRING optional device write msg,
DEFAULTSTRING for
pvars

DEFAULT-
STRING

DEFAULT-
WRITEMSG

Chapter 6: Creating Your Own Snapshot Files
Example

50 BURT: Back Up and Restore Tool Document Revision: 1

4.1. Include Files /* for getpwuid() */
#include <pwd.h>

/* for time() */
#include <sys/types.h>
#include <sys/time.h>

/* for geteuid() */
#include <unistd.h>

#include <burtpublic.h>

#include <SDDS.h>

Initially we have the #include files. The first four are necessary for the subsequent UNIX calls
we need to make to get information about the user generating the snapshot and the time at
which the snapshot was generated. The last two are necessary for BURT and SDDS,
respectively.

4.2. main() main()
{

SDDS_TABLE table;
int effective_uid;
time_t currtime;
struct passwd *pp;
char buff[100];

if (!SDDS_InitializeOutput(&table, SDDS_ASCII, 1L, NULL, NULL, “Snapshot”))
{

fprintf(stderr, “ERROR: unable to initialize table.\n”);
exit(1);

} /* endif */

Above we have named the output file Snapshot. Below we define the snapshot header,i.e., the
fixed valued parameters. Recall that BURT requires that only one of the parameters be defined,
TYPEHEADERSTRING (SnapType). However, we have defined all for this program. First,
we need to make some UNIX calls.

4.3. Necessary
UNIX calls

/***************************/
/* */
/* Defining the Parameters */
/* */
/***************************/

/* first, make all the necessary UNIX calls */

if (time(&currtime) == (time_t) -1)
{

fprintf(stderr, “ERROR: unable to get current time.\n”);
exit(1);

} /* endif */

effective_uid = geteuid();

if ((pp = getpwuid(effective_uid)) == NULL)
{

fprintf(stderr, “ERROR: unable to get user information.\n”);

Chapter 6: Creating Your Own Snapshot Files
Example

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 51

exit(1);
} /* endif */

Above are examples of the UNIX calls necessary identify who is creating the snapshot file and
the time at which it is created. Following are the SDDS calls to create each of the fixed valued
parameters. Note that the public names of the parameters, i.e., those found in burtpublic.h, are
used and that each parameter has been defined as the correct SDDS type. Note also the format
of the parameters, particularly the format of TIMEHEADERSTRING (TimeStamp) and
LOGINHEADERSTING (LoginID). BURT expects and demands this exact syntax.

4.4. Fixed Value
Parameters

/* time stamp */
if (!SDDS_DefineParameter(&table, TIMEHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, ctime(&currtime)) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
TIMEHEADERSTRING);

exit(1);
} /* endif */

/* loginid (real world name) */
sprintf(buff, “%s (%s)”, pp->pw_name, pp->pw_gecos);
if (!SDDS_DefineParameter(&table, LOGINHEADERSTING,

NULL, NULL, NULL, NULL, SDDS_STRING, buff) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
LOGINHEADERSTING);

exit(1);
} /* endif */

/* effective uid */
/* uid - person who logged in ... effective uid person as */
/* defined by “set-user-ID” (if done at all) */
sprintf(buff, “%d”, (int) pp->pw_uid);
if (!SDDS_DefineParameter(&table, EFFUIDHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, buff) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
EFFUIDHEADERSTRING);

exit(1);
} /* endif */

/* group id */
sprintf(buff, “%d”, (int) pp->pw_gid);
if (!SDDS_DefineParameter(&table, GROUPIDHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, buff) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
GROUPIDHEADERSTRING);

exit(1);
} /* endif */

/* keywords */
if (!SDDS_DefineParameter(&table, KEYWORDSHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, “these are keywords”) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
KEYWORDSHEADERSTRING);

exit(1);
 } /* endif */

/* comments */
if (!SDDS_DefineParameter(&table, COMMENTSHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, “these are comments”) == -1)
{

Chapter 6: Creating Your Own Snapshot Files
Example

52 BURT: Back Up and Restore Tool Document Revision: 1

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
COMMENTSHEADERSTRING);

exit(1);
} /* endif */

/* snapshot type, Absolute */
if (!SDDS_DefineParameter(&table, TYPEHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, ABSOLUTESTRING) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
TYPEHEADERSTRING);

exit(1);
} /* endif */

We have chosen to create an Absolute snapshot file by specifying the value
ABSOLUTESTRING. We could have just as easily created a Relative or Nowrite snapshot
file.

Immediately following is the definition of the columns. Although BURT does not require all
the columns, we chose to include all of them. Note that each column has been defined with the
correct public name and as the correct SDDS type.

4.5. Columns /************************/
 /* */
 /* Defining the Columns */
 /* */
 /************************/

if (SDDS_DefineColumn(&table, NAME_COL,
NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)

{
fprintf(stderr, “ERROR: could not define column >%s<.\n”, NAME_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, TYPE_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, TYPE_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, LINEAGE_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, LINEAGE_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, READMSG_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, READMSG_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, WRITEMSG_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, WRITEMSG_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, MODE_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, MODE_COL);
exit(1);

} /* endif */

Chapter 6: Creating Your Own Snapshot Files
Example

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 53

if (SDDS_DefineColumn(&table, NELEM_COL,
NULL, NULL, NULL, NULL, SDDS_LONG, 0) == -1)

{
fprintf(stderr, “ERROR: could not define column >%s<.\n”, NELEM_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, VAL_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, VAL_COL);
exit(1);

} /* endif */

4.6. Writing
header

/**********************/
/* */
/* Writing the Header */
/* */
/**********************/

if (!SDDS_WriteLayout(&table))
{

fprintf(stderr, “ERROR: could not write header.\n”);
exit(1);

} /* endif */

4.7. Starting the
table

/***************************/
/* */
/* Starting the Data Table */
/* */
/***************************/

if (!SDDS_StartTable(&table, 5L))
{

fprintf(stderr, “ERROR: unable to start the data table\n”);
exit(1);

} /* endif */

Below we fill the table with data values. This particular table has five entries, two process
variables and three devices.

4.8. Filling the
table

/*******************************/
/* */
/* Filling the Table With Data */
/* */
/*******************************/

The first value is a scalar process variable, ‘‘burtgenerator’’, with a value of 0.0.

/* row 0: scalar pv, name=”burtgenerator” val=0.0 */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 0L,
NAME_COL, “burtgenerator”,
TYPE_COL, PVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTSTRING,
WRITEMSG_COL, DEFAULTSTRING,
MODE_COL, DEFAULTSTRING,
NELEM_COL, 1L,
VAL_COL, “0.0”,

Chapter 6: Creating Your Own Snapshot Files
Example

54 BURT: Back Up and Restore Tool Document Revision: 1

NULL))
{

fprintf(stderr, “ERROR: unable to set row 0\n”);
exit(1);

} /* endif */

The second value is a device, ‘‘burtdevao’’, that is tagged Read Only and has a value of 1.0

/* row 1: device, name=”burtdevao” val=1.0 mode=RO */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 1L,
NAME_COL, “burtdevao”,
TYPE_COL, DEVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTREADMSG,
WRITEMSG_COL, DEFAULTWRITEMSG,
MODE_COL, READONLYSTRING,
NELEM_COL, 1L,
VAL_COL, “1.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 1\n”);
exit(1);

} /* endif */

The third value is also a device, ‘‘burtdevcalc’’, that is tagged Read Only Notify and has a
value of 2.0.

/* row 2: device, name=”burtdevcalc” val=2.0 mode=RON */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 2L,
NAME_COL, “burtdevcalc”,
TYPE_COL, DEVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTREADMSG,
WRITEMSG_COL, DEFAULTWRITEMSG,
MODE_COL, READONLYNOTIFYSTRING,
NELEM_COL, 1L,
VAL_COL, “2.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 2\n”);
exit(1);

} /* endif */

The fourth value is a device, ‘‘burtdevcalc’’, that is part of a composite device called
‘‘burtdevcomp’’. Its value is 3.0 and it here we choose to explicitly supply its backup message,
‘‘read’’. Although its backup message happens to be the same as the DEFAULTREADMSG,
we explicitly assigned the backup message its value to demonstrate how to do so. We could
have just as easily chosen any backup message we wanted to.

/* row 3: device, name=”burtdevcalc” val=3.0 parent=burtdevcomp */
/* readmsg=”read” */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 3L,
NAME_COL, “burtdevcalc”,
TYPE_COL, DEVSTRING,
LINEAGE_COL, “burtdevcomp”,
READMSG_COL, “read”,
WRITEMSG_COL, DEFAULTWRITEMSG,
MODE_COL, DEFAULTSTRING,
NELEM_COL, 1L,
VAL_COL, “3.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 3\n”);
exit(1);

Chapter 6: Creating Your Own Snapshot Files
Example

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 55

} /* endif */

The fifth value is a vector process variable, ‘‘burtwaveform’’, that has six elements. The last
two values of the vector are missing. Note when supplying values to a vector where some of
the values are missing the user must use NULLSTRING (from burtpublic.h) to specify the
missing values.

/* row 4: vector pv, name=”burtwaveform” nelem=6 */
/* val=[4.0 4.1 4.2 4.3 4.4 <missing> <missing>] */
sprintf(buff, “4.0 4.1 4.2 4.3 %s %s”, NULLSTRING, NULLSTRING);
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 4L,
NAME_COL, “burtwaveform”,
TYPE_COL, PVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTSTRING,
WRITEMSG_COL, DEFAULTSTRING,
MODE_COL, DEFAULTSTRING,
NELEM_COL, 6L,
VAL_COL, buff,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 4\n”);
exit(1);

} /* endif */

4.9. Writing the
table

/**************************/
/* */
/* Writing the Data Table */
/* */
/**************************/

if (!SDDS_WriteTable(&table))
{

fprintf(stderr, “ERROR: could not write table.\n”);
exit(1);

} /* endif */

4.10. Cleanup /***********/
/* */
/* Cleanup */
/* */
/***********/

if (!SDDS_Terminate(&table))
{

fprintf(stderr, “ERROR: could not terminate SDDS table.\n”);
exit(1);

} /* endif */

} /* end main() */

As mentioned, the previous program without interleaved commentary, its makefile, and the
output it generates can all be found in the appendices to this document.

There is one more note of interest which has to do with reading SDDS snapshot files into
programs outside the suite of BURT’s programs. As mentioned earlier, this document is not
intended as an instructional aid for SDDS, however, there is one parameter in the SDDS
snapshot files that merits further discussion, TIMEHEADERSTRING (TimeStamp). It has a
format all its own and it is occasionally convenient to convert that string value to one of the
UNIX conventions of the number of seconds since 00:00:00, January 1, 1970. This is done

Chapter 6: Creating Your Own Snapshot Files
Example

56 BURT: Back Up and Restore Tool Document Revision: 1

with the UNIX command strptime() which converts a string representation of time to the
number of seconds. It expects, as one of its arguments, a description of the format of the string.
This format can also be found in burtpublic.h in the #define’d variable
TIMEFORMATSTRING.

Assuming that the value of the parameter has been read into a string pointed at by the variable
cp, here is the code convert the string into one of UNIX’s internal structures.

/* for strptime() */
#include <time.h>
#include <burtpublic.h>
main()
{
char *cp;
struct tm tmtime;
.
.
.

strptime(cp, TIMEFORMATSTRING, &tmtime);
.
.
.
} /* end main() */

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 57

Chapter 7: Conclusion

1. Theory of Operation

Backing up and restoring sets of values in a dynamic database are simply read and write
operations with respect to the database, respectively. Although the values used during
restoration are typically the product of a previous back up, the two operations, reading and
writing, are inherently independent, and so the following discussions of each are separate and
independent.

Before starting our discussions of reading and writing, we need to understand the nature of
databases. A database is a finite set of records. At any point in time there is a finite set of
physical databases1 active in the system. So, at a point in time, let D be the database defined by
the union of all the physical databases active in the system.

Each record in D is a set of ordered attribute-value pairs where the attribute is the name of the
field within the record and, as these databases are not in first normal form, the value is an
ordered n-tuple of atomic data values (or simply values). Therefore, an ordered 3-tuple
<record name, field name, atom id>, which we call a name, is needed to uniquely identify a
value in D. For example, given a record R with field F where the value of F is an ordered pair,
the name <R, F, 2> identifies the second value in that ordered pair. The process of reading/
writing from/to a database is the process of reading/writing these values as identified by
names.

The read operation is a binary function. It takes as input a database D and a name. It returns the
value identified by name if name is in D, otherwise it returns ε, a null value to indicate that
name was not in D.

The write operation is a ternary predicate. It takes as input a database D, a name, and the value
to be written. If name is in D, the value is written there and returns true, otherwise it returns
false.

1.A physical database is a finite non-empty set of records. For further explanation see [4].

Chapter 7: Conclusion
Limitations

58 BURT: Back Up and Restore Tool Document Revision: 1

Reading and writing sets of values are simply a matter of performing individual reads and
writes using sets of appropriate input for each.

2. Limitations

As an implementation, BURT fails to meet the full functionality described by the theoretical
framework in the previous section. That framework calls for the ability to read and write
atomic data values as identified by a name. BURT cannot do that in the general sense. It is
limited to reading and writing the first n values of a field. For example, BURT is not capable of
reading only the second value from a field that contains more than one value. This inadequacy
has also manifested itself in ca_get()’s and ss_get()’s limitations.

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 59

Appendix A: Command Usage

1. burtconvertsnap

Usage:

burtconvertsnap snap {-l logfile} {-o outfile} {-v} {-sdds or -nosdds}

Where:

snap - Snapshot filename. This is the only switch that is not optional. You must specify
exactly one snapshot file. This is the snapshot file that will be converted.

-l logfile - Log filename. The name of the file where all logging messages (e.g. error
messages) go. The default is stderr.

-o outfile - Output snapshot filename. This is where the newly generated converted
snapshot file will be placed. The default is stdout.

-v - Verbose. This increases the amount of information displayed in the logfile.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to pro-
duce whatever the input snapshot file is not.

Appendix A: Command Usage
burtmath

60 BURT: Back Up and Restore Tool Document Revision: 1

2. burtmath

Usage:

burtmath (snap1 snap2 {-add or -sub}) or (snap1 -mult m) {-l logfile} {-o outfile}
{-v} {-c ... comments ...} {-k keyword1 ... keywordn} {-sdds or -nosdds}

Where:

snap1 snap2 {-add or -sub} - Adding/subtracting snapshots. Here you wish to either
add or subtract exactly two snapshot files. You must specify exactly two snapshot
files when performing. either addition or subtraction. The default operation is
-sub (subtraction).

snap1 -mult m - Multiplying snapshots. Here you wish to multiply all the values in
snap1 by multiplication factor m.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages, reports of process variables that were not found) go. The default is
stderr.

-o outfile - Result file name. The name of the file where the resulting information goes.
The default is stdout.

-v - Verbose. This increases the amount of information displayed in the logfile.

-c ... comments ... - Comments. Adds comments to the header of the result file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header of the result file.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the input(s). If there is a heterogenous set of inputs (some
SDDS and some non-SDDS), the default is to produce and SDDS compliant
snapshot file.

Appendix A: Command Usage
burtrb

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 61

3. burtrb

Usage:

burtrb -f req1 {req2 ...} {-l logfile} {-o outfile} {-d} {-v} {-c ... comments ...}
{-k keyword1 ... keywordn} {-r retry count} {-sdds or -nosdds}

Where:

-f req1 {req2 ...} - Request file names. This is the only switch that is not optional. You
must specify at least one request file.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages, reports of process variables that were not found) go. The default is
stderr.

-o outfile - Snapshot file name. The name of the file where the snapshot information
goes. The default is stdout.

-d - Debug. Save the files created by processing the request files with the C preproces-
sor. The default is to delete these files.

-v - Verbose. This increases the amount of information displayed in the logfile.

-c ...comments ... - Comments. Adds comments to the header of the snapshot file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header of the snapshot
file.

-r retry count - Number of additional attempts to wait for connections. The program
will attempt to find all the process variables. If it is unsuccessful, it will try this
many more times to establish connections. The default value is 0.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the input(s). If there is a heterogenous set of inputs (some
SDDS and some non-SDDS), the default is to produce an SDDS compliant snap-
shot file.

Appendix A: Command Usage
burtset

62 BURT: Back Up and Restore Tool Document Revision: 1

4. burtset

Usage:

burtset -f req1 req2 {-union or -inter or -diff} {-l logfile} {-o outfile} {-d} {-v}
{-sdds or -nosdds}

Where:

-f req1 req2 - Request filenames. This is the only switch that is not optional. You must
specify at least two request files.

-union or -inter or -diff - Set operation. The set operation (union, intersection, or dif-
ference) to be performed on the two request files. The default is union.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages) go. The default is stderr.

-o outfile - Request file name. The name of the file where the result of the set operation
goes. The default is stdout.

-d - Debug. Save the files created by processing the request files with the C preproces-
sor. The default is to delete these files.

-v - Verbose. This increases the amount of information displayed in the logfile.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the inputs. If there is a heterogenous set of inputs (one
SDDS and the other non-SDDS), the default is to produce and SDDS compliant
snapshot file.

Appendix A: Command Usage
burtwb

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 63

5. burtwb

Usage:

burtwb -f snap1 {snap2 ...} {-l logfile} {-o outfile} {-c ... comments ...}

{-k keyword1 ... keywordn} {-d} {-v} {-p dep1 ... depn} {-r retry count}
{-add} {-replace} {-sdds or -nosdds}

Where:

-f snap1 {snap2 ...} - Snapshot file names. This is the only switch that is not optional.
You must specify at least one snapshot file.

-l logfile - Log file name. The name of the file where all logging messages (e.g. error
messages, reports of process variables that were not found) go. The default is
stderr.

-o outfile - Snapshot file name. If any of the snapshot files Read Only Notify values,
this file is created and those values are placed there. If none of the snapshot files
have Read Only Notify values, then no file is created. The default is stdout.

-c ... comments ... - Comments. Adds comments to the header of the snapshot file.

-k keyword1 ... keywordn - Keywords. Adds keywords to the header of the snapshot
file.

-d - Debug. Save the files created by processing the dependency files with the C prepro-
cessor. The default is to delete these files.

-v - Verbose. This increases the amount of information displayed in the logfile.

-p dep1 ... depn - Dependency file names. The names of the dependency files contain-
ing predicates (Boolean conditions) to be evaluated before writing the values
from the snapshot files.

-r retry count - Number of additional attempts to wait for connections. The program
will attempt to find all the process variables. If it is unsuccessful, it will try this
many more times to establish connections. The default value is 0.

-add - Absolute snapshots written as adds. All the absolute snapshots, i.e., those taken
directly off IOCs, will be written as additions to the values found on the IOCs.
The default is to write the absolute snapshots as replacement values on the IOCs.

-replace - Relative snapshots written as replacements. All the relative snapshots, i.e.,
those generated by adding or subtracting two snapshots, will be written to replace
the values on the IOCs. The default is to write the relative snapshots as additions
to the values on the IOCs.

-sdds or -nosdds - SDDS/non-SDDS snapshot file. Explicitly specifying that the gen-
erated snapshot file will be SDDS/non-SDDS compliant. The default is to adopt
the SDDS type from the input(s). If there is a heterogenous set of inputs (some
SDDS and some non-SDDS), the default is to produce an SDDS compliant snap-
shot file.

Appendix A: Command Usage
burtwb

64 BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 65

Appendix B: BURT Header File

1. burtpublic.h

#ifndef __burtpublic__
#define __burtpublic__

#define NULLSTRING “\\0”
#define TIMEFORMATSTRING “%a %h %d %T %Y” /* “man stpftime” to understand */

 /* format of output from ctime() */

/* Start SDDS Snapshot Parameters */
#define TIMEHEADERSTRING “TimeStamp”
#define LOGINHEADERSTRING “LoginID”
#define EFFUIDHEADERSTRING “EffectiveUID”
#define GROUPIDHEADERSTRING “GroupID”
#define KEYWORDSHEADERSTRING “BurtKeywords”
#define COMMENTSHEADERSTRING “BurtComments”
#define TYPEHEADERSTRING “SnapType”
/* End SDDS Snapshot Parameters */

#define READONLYSTRING “RO”
#define READONLYNOTIFYSTRING “RON”

#define ABSOLUTESTRING “Absolute”
#define RELATIVESTRING “Relative”
#define NOWRITESTRING “Nowrite”

/* Start SDDS */
/* column names */
#define NAME_COL “ControlName”
#define TYPE_COL “ControlType”
#define LINEAGE_COL “Lineage”
#define READMSG_COL “BackupMsg”
#define WRITEMSG_COL “RestoreMsg”
#define NELEM_COL “Count”
#define MODE_COL “ControlMode”
#define VAL_COL “ValueString”

Appendix B: BURT Header File
burtpublic.h

66 BURT: Back Up and Restore Tool Document Revision: 1

/* string constants found in req files */
#define PVSTRING “pv”
#define DEVSTRING “dev”

/* default messages */
#define DEFAULTREADMSG “read”
#define DEFAULTWRITEMSG “set”

#define DEFAULTSTRING “-”
#define LINEAGEDELIMETER “,”

/* End SDDS */

#define UNKNOWN -1
#define UNKNOWNLOGINID “Unknown”
#define UNKNOWNREALWORLDNAME “Unknown”

#endif

Appendix B: BURT Header File
burtpublic.h

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 67

Appendix B: BURT Header File
burtpublic.h

68 BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 69

Appendix C: Sample BURT Program

1. snap.c

/* for getpwuid() */
#include <pwd.h>

/* for time() */
#include <sys/types.h>
#include <sys/time.h>

/* for geteuid() */
#include <unistd.h>

#include <burtpublic.h>

#include <SDDS.h>

main()
{

SDDS_TABLE table;
int effective_uid;
time_t currtime;
struct passwd *pp;
char buff[100];

if (!SDDS_InitializeOutput(&table, SDDS_ASCII, 1L, NULL, NULL, “Snapshot”))
{

fprintf(stderr, “ERROR: unable to initialize table.\n”);
exit(1);

} /* endif */

/***************************/
/* */
/* Defining the Parameters */
/* */
/***************************/

Appendix C: Sample BURT Program
snap.c

70 BURT: Back Up and Restore Tool Document Revision: 1

/* first, make all the necessary UNIX calls */

if (time(&currtime) == (time_t) -1)
{

fprintf(stderr, “ERROR: unable to get current time.\n”);
exit(1);

} /* endif */

effective_uid = geteuid();

if ((pp = getpwuid(effective_uid)) == NULL)
{

fprintf(stderr, “ERROR: unable to get user information.\n”);
exit(1);

} /* endif */

/* time stamp */
if (!SDDS_DefineParameter(&table, TIMEHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, ctime(&currtime)) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
TIMEHEADERSTRING);

exit(1);
} /* endif */

/* loginid (real world name) */
sprintf(buff, “%s (%s)”, pp->pw_name, pp->pw_gecos);
if (!SDDS_DefineParameter(&table, LOGINHEADERSTING,

NULL, NULL, NULL, NULL, SDDS_STRING, buff) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
LOGINHEADERSTING);

exit(1);
} /* endif */

/* effective uid */
/* uid - person who logged in ... effective uid person as */
/* defined by “set-user-ID” (if done at all) */
sprintf(buff, “%d”, (int) pp->pw_uid);
if (!SDDS_DefineParameter(&table, EFFUIDHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, buff) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
EFFUIDHEADERSTRING);

exit(1);
} /* endif */

/* group id */
sprintf(buff, “%d”, (int) pp->pw_gid);
if (!SDDS_DefineParameter(&table, GROUPIDHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, buff) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
GROUPIDHEADERSTRING);

exit(1);
} /* endif */

/* keywords */
if (!SDDS_DefineParameter(&table, KEYWORDSHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, “these are keywords”) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
KEYWORDSHEADERSTRING);

exit(1);
} /* endif */

/* comments */

Appendix C: Sample BURT Program
snap.c

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 71

if (!SDDS_DefineParameter(&table, COMMENTSHEADERSTRING,
NULL, NULL, NULL, NULL, SDDS_STRING, “these are comments”) == -1)

{
fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,

COMMENTSHEADERSTRING);
exit(1);

} /* endif */

/* snapshot type, Absolute */
if (!SDDS_DefineParameter(&table, TYPEHEADERSTRING,

NULL, NULL, NULL, NULL, SDDS_STRING, ABSOLUTESTRING) == -1)
{

fprintf(stderr, “ERROR: could not define parameter >%s<.\n”,
TYPEHEADERSTRING);

exit(1);
} /* endif */

/************************/
/* */
/* Defining the Columns */
/* */
/************************/

if (SDDS_DefineColumn(&table, NAME_COL,
NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)

{
fprintf(stderr, “ERROR: could not define column >%s<.\n”, NAME_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, TYPE_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, TYPE_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, LINEAGE_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, LINEAGE_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, READMSG_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, READMSG_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, WRITEMSG_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, WRITEMSG_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, MODE_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, MODE_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, NELEM_COL,

NULL, NULL, NULL, NULL, SDDS_LONG, 0) == -1)
{

fprintf(stderr, “ERROR: could not define column >%s<.\n”, NELEM_COL);
exit(1);

} /* endif */
if (SDDS_DefineColumn(&table, VAL_COL,

NULL, NULL, NULL, NULL, SDDS_STRING, 0) == -1)
{

Appendix C: Sample BURT Program
snap.c

72 BURT: Back Up and Restore Tool Document Revision: 1

fprintf(stderr, “ERROR: could not define column >%s<.\n”, VAL_COL);
exit(1);

} /* endif */

/**********************/
/* */
/* Writing the Header */
/* */
/**********************/

if (!SDDS_WriteLayout(&table))
{

fprintf(stderr, “ERROR: could not write header.\n”);
exit(1);

} /* endif */

/***************************/
/* */
/* Starting the Data Table */
/* */
/***************************/

if (!SDDS_StartTable(&table, 5L))
{

fprintf(stderr, “ERROR: unable to start the data table\n”);
exit(1);

} /* endif */

/*******************************/
/* */
/* Filling the Table With Data */
/* */
/*******************************/

/* row 0: scalar pv, name=”burtgenerator” val=0.0 */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 0L,
NAME_COL, “burtgenerator”,
TYPE_COL, PVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTSTRING,
WRITEMSG_COL, DEFAULTSTRING,
MODE_COL, DEFAULTSTRING,
NELEM_COL, 1L,
VAL_COL, “0.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 0\n”);
exit(1);

} /* endif */

/* row 1: device, name=”burtdevao” val=1.0 mode=RO */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 1L,
NAME_COL, “burtdevao”,
TYPE_COL, DEVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTREADMSG,
WRITEMSG_COL, DEFAULTWRITEMSG,
MODE_COL, READONLYSTRING,
NELEM_COL, 1L,
VAL_COL, “1.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 1\n”);
exit(1);

} /* endif */

Appendix C: Sample BURT Program
snap.c

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 73

/* row 2: device, name=”burtdevcalc” val=2.0 mode=RON */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 2L,
NAME_COL, “burtdevcalc”,
TYPE_COL, DEVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTREADMSG,
WRITEMSG_COL, DEFAULTWRITEMSG,
MODE_COL, READONLYNOTIFYSTRING,
NELEM_COL, 1L,
VAL_COL, “2.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 2\n”);
exit(1);

} /* endif */

/* row 3: device, name=”burtdevcalc” val=3.0 parent=burtdevcomp */
/* readmsg=”read” */
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 3L,
NAME_COL, “burtdevcalc”,
TYPE_COL, DEVSTRING,
LINEAGE_COL, “burtdevcomp”,
READMSG_COL, “read”,
WRITEMSG_COL, DEFAULTWRITEMSG,
MODE_COL, DEFAULTSTRING,
NELEM_COL, 1L,
VAL_COL, “3.0”,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 3\n”);
exit(1);

} /* endif */

/* row 4: vector pv, name=”burtwaveform” nelem=6 */
/* val=[4.0 4.1 4.2 4.3 4.4 <missing> <missing>] */
sprintf(buff, “4.0 4.1 4.2 4.3 %s %s”, NULLSTRING, NULLSTRING);
if (!SDDS_SetRowValues(&table,

(long) (SDDS_SET_BY_NAME | SDDS_PASS_BY_VALUE), 4L,
NAME_COL, “burtwaveform”,
TYPE_COL, PVSTRING,
LINEAGE_COL, DEFAULTSTRING,
READMSG_COL, DEFAULTSTRING,
WRITEMSG_COL, DEFAULTSTRING,
MODE_COL, DEFAULTSTRING,
NELEM_COL, 6L,
VAL_COL, buff,
NULL))

{
fprintf(stderr, “ERROR: unable to set row 4\n”);
exit(1);

} /* endif */

/**************************/
/* */
/* Writing the Data Table */
/* */
/**************************/

if (!SDDS_WriteTable(&table))
{

fprintf(stderr, “ERROR: could not write table.\n”);
exit(1);

} /* endif */

Appendix C: Sample BURT Program
snap.c

74 BURT: Back Up and Restore Tool Document Revision: 1

/***********/
/* */
/* Cleanup */
/* */
/***********/

if (!SDDS_Terminate(&table))
{

fprintf(stderr, “ERROR: could not terminate SDDS table.\n”);
exit(1);

} /* endif */

} /* end main() */

Appendix C: Sample BURT Program
makefile

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 75

2. makefile

CC = acc

EPICS = /net/phebos/epics/add_on

BURTINCDIR = -I$(EPICS)/src/burt
SDDSINCDIR = -I$(EPICS)/src/sdds/include

INCLUDEDIRS = $(BURTINCDIR) $(SDDSINCDIR)

SDDSLIBDIR = -L$(EPICS)/lib

LIBDIRS = $(SDDSLIBDIR)

LIBS = -lSDDS1 -lnamelist -lmdblib
CFLAGS = -c

snap:snap.o
$(CC) -o snap snap.o $(LIBDIRS) $(LIBS)

clean:
/bin/rm -f *.o snap

.c.o:$*.c
$(CC) $(CFLAGS) $(INCLUDEDIRS) $*.c

Appendix C: Sample BURT Program
makefile

76 BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 77

Appendix D: SDDS Snapshot File

SDDS1
&description &end
¶meter
 name = “TimeStamp”, type = “string”, fixed_value = “Mon Jul 25 11:01:42 1994
“, &end
¶meter
 name = “LoginID”, type = “string”, fixed_value = “karonis (Nicholas T. Karonis)”,
&end
¶meter
 name = “EffectiveUID”, type = “string”, fixed_value = “164”, &end
¶meter
 name = “GroupID”, type = “string”, fixed_value = “55”, &end
¶meter
 name = “BurtKeywords”, type = “string”, fixed_value = “these are keywords”, &end
¶meter
 name = “BurtComments”, type = “string”, fixed_value = “these are comments”, &end
¶meter
 name = “SnapType”, type = “string”, fixed_value = “Absolute”, &end
&column
 name = “ControlName”, type = “string”, &end
&column
 name = “ControlType”, type = “string”, &end
&column
 name = “Lineage”, type = “string”, &end
&column
 name = “BackupMsg”, type = “string”, &end
&column
 name = “RestoreMsg”, type = “string”, &end
&column
 name = “ControlMode”, type = “string”, &end
&column
 name = “Count”, type = “long”, &end
&column
 name = “ValueString”, type = “string”, &end
&data
 mode = “ascii”, &end
! table number 1
5 ! number of rows

Appendix D: SDDS Snapshot File

78 BURT: Back Up and Restore Tool Document Revision: 1

burtgenerator pv - - - - 1 0.0
burtdevao dev - read set RO 1 1.0
burtdevcalc dev - read set RON 1 2.0
burtdevcalc dev burtdevcomp read set - 1 3.0
burtwaveform pv - - - - 6 “4.0 4.1 4.2 4.3 \0 \0”

Appendix D: SDDS Snapshot File

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 79

Appendix D: SDDS Snapshot File

80 BURT: Back Up and Restore Tool Document Revision: 1

EPICS Release: R3.11.6 BURT: Back Up and Restore Tool 81

Bibliography

[1] M. Borland, ‘‘Application Programmer’s Guide for SDDS Version 1’’, Argonne National
Laboratory, Advanced Photon Source, December 1993.

[2] R. Cole, ‘‘Archiving Reference Manual’’, Los Alamos National Laboratory, January 1993.

[3] J.O. Hill, ‘‘Channel Access Reference Manual’’, Los Alamos National Laboratory.

[4] N.T. Karonis and M.R. Kraimer, ‘‘Links in a Distributed Database: Theory and Implemen-
tation’’, Argonne National Laboratory, Advanced Photon Source, December 1991.

[5] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, N.J., 1978.

[6] M. R. Kraimer, ‘‘Experimental Physics Industrial Control System (EPICS) Input/Output
Controller (IOC) Application Developer’s Guide’’, Argonne National Laboratory,
Advanced Photon Source, May 1994.

[7] P.J. Plauger, The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J., 1992.

[8] C. Saunders, ‘‘Device Access Library: User’s Guide and Reference’’, Argonne National
Laboratory, Advanced Photon Source.

 Bibliography

82 BURT: Back Up and Restore Tool Document Revision: 1

