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A detailed study of the influence of space charge on the crossing of second-order resonances is pre-
sented and associated with the space-charge limit of high-intensity rings. Two-dimensional simulation
studies are compared with envelope models, which agree in the finding of an increased intensity limit due
to the coherent frequency shift. Thisresult is aso found for realistic bunched beams with multiturn injec-
tion painting. Characteristic features such as the influence of tune splitting, structure resonances, and the
role of envelope instabilities are discussed in detail. The theoretical limits are found to be in good agree-
ment with the performance of high-intensity proton machines.

DOI: 10.1103/PhysRevSTAB.5.024202

I. INTRODUCTION

The importance of space charge was redlized at an early
stage of the design of high-intensity rings. The figure of
merit became the space-charge induced shift of individual-
particle betatron tunes. In conjunction with the single-
particle framework of betatron resonances this resulted in
the space-charge limit argument for circular accelerators.
However, such a widely used criterion, which is based
on the resonance condition for the incoherent tunes, over-
estimates the threshold for the onset of the resonances and,
equally important, incorrectly describes the resonance re-
sponse. A correct treatment requires one to take into ac-
count the collective behavior of the beam. Understanding
such collective beam behavior near the resonances, as well
as associated resonance crossing, is of crucial importance
for the next generation high-intensity rings under construc-
tion and design. It aso provides the framework for the in-
tensity upgrade of existing high-intensity machines.

In this paper we demonstrate the validity of collective
beam response to betatron resonances using as an ex-
ample the Spallation Neutron Source (SNS) accumulator
ring which is currently under construction [1]. We also
describe the main features of beam envelope resonant re-
sponse and its application to the space-charge limit in the
high-intensity rings. We first confirm this collective reso-
nance theory for a two-dimensional unbunched beam with
various beam distributions. We then extend our studies to
a redlistic bunched beam as well as the process of beam
accumulation by multiturn injection. As a result, we ex-
plore the applicability of collective-resonance theory to a
bunched beam in high-intensity circular accelerators.

The structure of the paper is as follows. Section Il is
devoted to an overview of coherent resonance theory with
an application to the space-charge limit in a ring. Sec-
tion 11l demonstrates application of this theory with re-
gard to a haf-integer resonance driven by the gradient
errors. In this section both the space-charge limit and en-
vel ope response issues are discussed. Section IV compares
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beam envel ope response to an imperfection resonance with
a similar response to a structure resonance. In particular,
one of the proposed SNS working points is examined and
the resulting space-charge limit is discussed. Section V is
devoted to a discussion of the coherent resonance condi-
tion and its application to the envelope instability. Finaly,
Sec. VI summarizes major points that follow from the
coherent-resonance response.

Il. SPACE-CHARGE LIMIT
A. Coherent resonance theory

In the absence of coupling, the resonance condition for
the tune can be written asn/m = vq, where n is the har-
monic content of the errors and m is the resonance or-
der. The resonance order m can be associated with the
multipole spectrum of the lattice errors, with m = 2 cor-
responding to gradient errors, m = 3 to sextupole errors,
etc. If we now think about space charge as a perturba-
tion producing a tune shift of individual particles (inco-
herent tune shift), the resonance condition would become
n/m = vipe = vg — Avg, With Ay, being the maxi-
mum space-charge tune shift. Such a criterion is widely
used when one wants to choose the best working point in
the tune space by avoiding dangerous resonances. How-
ever, this condition, based on the single-particle frame-
work, cannot correctly describe the onset of the resonance
and provide the proper picture of beam-envelope reso-
nant response. For high-intensity accelerators this con-
dition gives too conservative an estimate for low-order
resonances which are most important in consideration of
the resonance condition and underestimates the maximum
achievable current. A correct treatment requires one to
take into account the collective behavior of the beam.

The fact that the incoherent tune is inadequate to
describe integer resonances was first emphasized by
Morin [2] and Lapostolle [3]. It was then Smith [4] who
used the envelope equation to prove that the half-integer
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resonance does not occur at the incoherent frequencies.
Smith’s analysis was extended to the high-order reso-
nances by Sacherer [5] using the 1D Vlasov equation. The
theoretical framework was later extended to two dimen-
sions by Gluckstern [6]. This theory was subsequently
confirmed with computer simulations by Hofmann [7]
and Machida [8]. Recently, a very useful overview was
presented by Baartman [9].

The incoherent space-charge approach to the second-
order resonance condition fails because it is based on the
assumption that the beam size remains constant. However,
the beam envel ope depends on the oscillation amplitude of
the individual particles. Thus, if the gradient error causes
these amplitudes to grow, the beam size also grows which
in turn reduces the space-charge effect (this, of course, aso
applies to the high-order multipole errors). Clearly, the
incoherent space-charge approach is not self-consistent.
More than that, using the KV (Kapchinsky-VIadimirsky)
beam, it is easy to show [5,10] that the effect of gradient
errors in the lattice is exactly compensated by the space-
charge perturbation induced by those errorsif vi,. = n/2.
A similar result can be obtained for the high-order reso-
nances using the Vlasov equation [11].

In general, the coherent resonance condition has the
form

n=0,=myry — AQ,,, (D)

where (,, is the frequency of the mth-order coherent
beam mode and A(),, is the coherent space-charge tune
shift of the mth-order mode from its zero-current value
(mvg). In principle, an externa driving potentia in the
form x* cos(mv(8) can drive collective beam modes with
k # m. It has been suggested that modes with k # m
should not be expected to play a significant role for beams
with realistic non-KV distributions [9]. The resonance
condition of Eq. (1) takes into consideration that the reso-
nance is coherent in nature and eliminates a possible con-
fusion with the incoherent resonance condition. However,
for practical estimates of the space-charge limit in aring it
isnot very illuminating since the allowed maximum inten-
sity is typically calculated through the maximum space-
charge tune shift of individual particles. Therefore, we
follow the notation of Ref. [9] and express the coherent
space-charge tune shift as AQ),, = mC,,Av,.. The coher-
ent mode frequencies for any order of m were derived both
for the axisymmetric [6] and nonaxisymmetric [12] beams.
The corresponding coefficients C,, can be easily extracted
from Refs. [6,11,12] and are summarized, for example, in
Ref. [9].

In this paper we consider only the m = 2 case which
is associated with the space-charge limit imposed by the
half-integer resonance. For atwo-dimensional round beam
(a = b) there are two coherent modes of beam envelope
oscillation. For the case of very close zero-current tunes,
lvox — voyl < Avg /4, one refers to these modes as
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symmetric (“in-phase”) mode with AQ,¢m = Avy. and
antisymmetric (“out-of-phase”) mode with A€ 34ym =
%AVSC, with mode frequencies obtained by linearizing the
envelope equations for small perturbation. As a result,
the space-charge limit (coherent resonance condition for
the n/2 resonance) is expected around beam intensities
Avg./C,, which is 2Av,. and %Avse for the symmetric
and antisymmetric modes, respectively. Note that, if
a # b, the coefficient C, depends on the transverse
beam sizes @« and b [5,9]. For the split-tune case,
lvox — voyl > Awe /4, the two envelope modes are
essentially decoupled. Although the in-phase and out-of-
phase symmetry of the mode oscillationsis still preserved,
one can regard such oscillations as one-dimensional with
approximately the same coherent space-charge tune shiftin
both transverse planes. A€, sp1ic = %Avsc. Asaresult, the
coherent space-charge limit (using smooth-approximation)
for around beam (a = b) IS sAv.

B. Nonuniform distributions

The collective beam modes and coherent resonance con-
dition were derived using the uniform-density KV beam.
However, it was shown by Sacherer [13] that one can
use the rms envelope equation for non-KV distributions
as well, using the rms quantities. This allows us to use
second-order coherent modes for non-KV beams and treat
the coherent envelope response to the half-integer reso-
nance using the rms envelope equation. This concept of
the KV equivalent beams has been used in studies of the
high-order resonances as well [8,9,14].

It turns out that, for a nonuniform distribution, the dif-
ference between the single-particle approach and coherent
resonance condition becomes even more pronounced. This
important feature was specifically emphasized by Machida
[8] and Baartman [9]. A significant differenceisdueto the
fact that the coherent resonance condition, givenin Eq. (1),
when applied to nonuniform beams assumes the rms
equivaent uniform beam (KV) tune shift. However, for
nonlinear distributions the maximum space-charge tune
shift is bigger than the one of a uniform beam. For
example, for a Waterbag (WB) distribution Avg max =
1.33Avky, and for a Gaussian distribution Avg max =
2Avky. As a result, the incoherent space-charge tune
shift can significantly exceed the single-particle resonance
condition until the coherent resonance condition for an
rms equivalent KV beam is met.

C. Decoherence effects

The theory of collective beam-envelope response to a
resonance at the coherent frequencies is based on a two-
dimensional beam model. For bunched beams the onset of
the resonance can be predicted to some extent by using the
bunching factor parameter and thus considering the reso-
nance condition for the portion of the beam in the vicinity
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of the highest longitudinal charge density. However, to
what extent this coherent resonant response is altered in
the presence of other effects, such as synchrotron motion,
beam energy spread, multiturn injection, etc., is not ob-
vious without dedicated study. One may expect that the
impact of such effectsis not strong for the SNS beam pa-
rameters due to the very slow synchrotron motion. These
effects are explored in Sec. 1V with an application to the
SNS accumulator ring.

1. HALF-INTEGER IMPERFECTION
RESONANCE

To demonstrate the coherent-resonance theory we have
chosen the SNS working point with the zero-current tunes
(vox, voy) = (6.45,4.6). A gradient error is then intro-
duced in order to investigate the half-integer resonance
with harmonic n = 9.

A. Coherent space-charge limit

The single-particle approach predicts the resonance con-
dition at the intensity which corresponds to the space-
charge tune shift of Av,. = 0.1 in the vertical direction.
For abeam with auniform density, the tunes of all particles
are thus placed at v, = 4.5 when I = Avg/Avipe = 1.
Here, the incoherent space-charge limit Avy,. is defined
as the distance from the bare tune to the half-integer reso-
nanceline, Avine = vo, — n/2. For nonuniform distribu-
tions, the incoherent resonance condition occurs for the
intensity parameter I less than unity (if 7 = 1 is taken
to be an intensity where the resonance condition for a
uniform-density beam is satisfied) because the maximum
space-charge tune shift of a nonuniform beam is larger
than the one of a uniform-density beam. Specificaly,
for a Waterbag distribution Avg max = 1.33Avgy, Where
Avgy is the space-charge tune shift of a beam with the
uniform-density KV distribution. As a result, the inco-
herent space-charge limit for a WB beam is expected at
intensity 7 = 0.75. On the other hand, the coherent beam
resonance is expected at similar intensities for both a KV
and a WB beam. For the working point discussed in
this example, |vo, — voy| > Aw /4, and around beam
(a = b), the resonance condition is expected around I =
8/5. In the next section the space-charge limits discussed
above are first studied using exact numerical solution of
the envelope equations and then using the particle-in-cell
(PIC) simulations.

B. Beam envelope response

Some important features of space-charge effects on
crossing of the half-integer resonance, such as the coher-
ent frequency shift, nonlinear detuning, and saturation
of beam envelope growth, can be retrieved from the
envelope equations [5]. Obvioudly, the effect of frequency
spread—as a possible source of decoherence—and the
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filamentation in the phase space due to hao formation
are beyond the level of description of an envelope model.
Furthermore, the possibility of envelope instability needs
to be considered in some special cases, as will be shown
in Sec. V.

We begin our analysis with numerical solution of the
envelope equations. Noting that the effect of the error
resonance depends primarily on the tune and not the de-
tails of the focusing lattice, we start with an assumption
of constant focusing. We consider the half-integer reso-
nance near the unsplit-tune working point v ., = 4.6 and
assume n = 9, where n stands for the error Fourier har-
monic. Hence, the expected coherent resonance condition
is

Qz = 21/() - AQz = 9, (2)

where A(), is the coherent space-charge tune shift of the
second-order modes (),. An antisymmetric error in x and
y (as would be produced by a single quadrupole) then
drives an out-of-phase mode resonance, while a symmetric
error is needed to drive the in-phase mode resonance (note
that for sufficiently split tunes a single quadrupole error
will drive both modes).

We assume equal emittances in x and y and solve
the envelope equations with error Fourier harmonics of
1 X 1073 units (relative to the unperturbed focusing
constant) and a small initial envelope mismatch of 2%.
To demonstrate the effect of the space charge on the
envelope, Fig. 1 shows the case of a symmetric error driv-
ing the in-phase mode resonance with beam parameters
such that the single-particle tune is just on the resonance
(incoherent depressed tune v., = 4.5). The envelope
undergoes a small periodic beating due to the proximity
of the coherent tune to the resonance; note the relative
smallness of the effect for the incoherent tune sitting
exactly on resonance. The maximum envelope excursion
grows with increasing beam intensity (decreasing of the
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FIG. 1. (Color) Beating of envelope near half-integer imperfec-

tion resonance with 103 symmetric error at harmonic n = 9
(single particle tune on resonance with v, , = 4.5).
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FIG. 2. (Color) Maximum envelope excursions (normalized to
initial value) for symmetric and antisymmetric focusing errors at
variable intensity with fixed bare tune v, , = 4.6, and for zero
space charge case varying v, (1073 level error at harmonic
n=29).

depressed tune v, ), which brings the coherent mode
frequency closer to the resonance. In Fig. 2 we show
the maximum envelopes for this case as a function of
depressed incoherent tune v, , for both the symmetric
and antisymmetric errors, which drive the in-phase
and out-of-phase modes, respectively. The envelope
increases noticeably only with the coherent frequency
crossing the integer, which occurs at v, , = 4.467 (beam

intensity equal to %Avinc) for the out-of-phase mode,
and a v,, = 4.4 (beam intensity equal to 2Aw;,.) for
the in-phase mode. Because of the nonlinear dependence
(increase) of the envel ope eigenfrequency with amplitude,
the maximum growth happens for higher beam intensities
a v,, = 4.44 for the out-of-phase mode and v, , = 4.37
for the in-phase mode. For completeness, a zero-current
envelope response to this 1/2 resonance is obtained by
varying the working point v, .

The size of the maximum envelope excursion, as well
as the width of beam envelope response curve, is a func-
tion of the strength of the imperfection resonance (magni-
tude of an error). To demonstrate this effect, Fig. 3 shows
the maximum y envelopes for the split-tune working point
(vox, voy) = (6.45,4.6) and three different magnitudes of
anerror, 3 X 1073, 1 X 1073, and 1/3 X 1073 (an an-
tisymmetric error was chosen, but the results are very
similar for a symmetric error). The intensity parameter
I = Avy. /Av;,. (abscissa) is expressed as space-charge
tune shift normalized to the distance from the bare tune
to the half-integer (Avi,.). Such a response diagram ex-
plicitly shows the beneficial effect of the coherent reso-
nance condition compared to the incoherent space-charge
limit, correspondingto/ = 1. Notethat the coherent enve-
lope frequency is exactly on resonance for the normalized
tune shift of 1.635, the number obtained by direct solution
of the full dispersion relation for the coherent frequency.
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FIG. 3. (Color) Maximum y envelope excursions for three mag-
nitudes of focusing errors with fixed (v, vo,) = (6.45,4.6) as
a function of normalized tune shift (intensity parameter I with
I = 1.635 indicating the small-amplitude envelope resonance
condition and 7 = 1 indicating the single-particle resonance).
The result of the exact numerical solution of the envelope
equations.

This number is dlightly higher than the smooth approxi-
mation coefficient 8/5, discussed in Sec. Il A. The stop
bands shown in this picture are related to the out-of-phase
mode, while the in-phase mode resonance would appear if
v, Were chosen correspondingly above 6.5. The strongly
asymmetric shape of the envelope response curvesis are-
sult of the nonlinear nature of the envelope equation, in
particular, the increase of envelope frequency with ampli-
tude. The basic features of such response curves are sum-
marized in Appendix A.

We now proceed with the PIC simulations, using
the SNS lattice with the working point at (v, voy) =
(6.45,4.6). A gradient error is introduced in a single
quadrupole with the normalized strength of an error
Ak = 2.5 X 1073 units. Simulations were done using the
code orBIT [15]. The results of simulations are presented
in Fig. 4, which confirm the beam envelope response
expected based on the envelope eguations (Fig. 3). In
Fig. 4, the green (short-dashed) vertical line indicates
the incoherent space-charge limit for a WB beam, the
pink (long-dashed) line corresponds to the incoherent
space-charge limit of a uniform density beam, while the
red (solid) line shows the coherent resonance condition.
All major features of the coherent resonance response
are trangparent: resonance happens at higher intensity
than the incoherent space-charge limit, it leads to a finite
increase of beam envelopes, and the maximum envelope
amplitudes are reached at intensities higher than the
middle point of the resonance. Note that our statement
about finite envelope excursions during the resonance
crossing in the direction of the normalized tune shift
(intensity) increase is true only for simulations with a
fixed intensity for each individual run. This alows the
possibility of getting out of the resonance condition with
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FIG. 4. (Color) Maximum y envelope excursions as a function
of normalized tune shift. For each intensity, PIC simulations
with the SNS | attice were performed using the code ORBIT (maxi-
mum of beam envelope oscillation is plotted with blue dots).
The imperfection resonance was excited by introducing gradient
error in a single quadrupole.

envelope oscillations around a small-amplitude stable
fixed point. With a slow adiabatic increase of beam
intensity the beam envelopes are expected to grow with
oscillations around large-amplitude stable fixed points
(see Appendix A). Both of these features of an envelope
response were recently demonstrated using the envelope
equations and PIC simulation with a multiturn injection
for the LANL Proton Storage Ring (PSR) [16,17]. Also,
similar features of nonlinear envelope response were re-
cently shown in simulations for the FNAL booster lattice
[18]. An important feature of the coherent nonlinear
resonant response is significantly different beam behavior
depending on whether the resonance is crossed in the
direction of increasing or decreasing space-charge effect
(see Appendix A). Recently, an experimental study of
this effect was performed by Uesugi et al. [19].

IV. HALF-INTEGER STRUCTURE RESONANCE

One of the recently proposed SNS working points
(vox, voy) = (6.23,6.20) seems to be a good operational
region due to the absence of dangerous imperfection
resonances [20]. However, this working point lies very
close to the systematic half-integer structure resonance
with harmonic n = 12 due to the SNS superperiodicity
of 4. It is thus extremely important to understand in-
tensity limitations for this working point. This resulted
in our studies of this working point with regard to the
coherent-resonance condition and its applicability to the
structure resonances.
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A. Uniform distribution

We start our PIC simulations with a uniform-density
KV beam. The maximum space-charge tune shift of a
full-intensity SNS beam with N = 2 X 10'* protons can
be as big as Av,, = 0.2, depending on the beam dis-
tribution. For unbunched beam the effective number of
particles should be increased to keep a similar equiva-
lent space-charge tune shift. We use an effective inten-
sity parameter N through our presentation of unbunched
beams while a realistic number of particles N will be used
for a later description of bunched beams. Here we as-
sume typical SNS beam parameters at energy 1 GeV with
unnormalized horizontal and vertical emittance e, €, =
120 mmmrad (for a KV beam €., = 4€,yms). AS
a result, N = 6.6 depresses betatron tunes to near the
2v, = 12 resonance. Note that no magnet errors are in-
cluded in the simulations so that only lattice harmonics are
present, with n = 12 being the structure harmonic due the
SNS superperiodicity of 4. A dlightly higher intensity of
N = 7.3 distributesincoherent tunes around the 2v, = 12
resonance line which would ensure beam blowup and par-
ticle loss following the standard single-particle approach
(smilar to the envelope response in Fig. 2 shown with
black lines around tune of 4.5). The corresponding tune
footprints are shown in Fig. 5 (the plotted incoherent tunes
are obtained using the oreiT approach [15], which is based
on tracking the phase advance of each particle over asingle
turn). However, for both intensities, no 2v, = 12 reso-
nance is observed, as can be seen in Fig. 6, where rms
beam emittances over the first 50 turns are plotted. The
small emittance exchange observed in Fig. 6 is due to the
coupl ed-tune working point with some details addressed in

6.2 ¢ [ ]

vertical tune
o
|_\

()]

59¢

5.9 6 6.1 6.2
horizontal tune

FIG. 5. (Color) Tune footprints of a KV beam for the SNS lat-
tice working point (v,, v,) = (6.23,6.20), shown by a blue dot.
Intensities N = 6.6 (red), N = 7.3 (green), and N = 9.7 (pink).
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FIG. 6. (Color) rms emittances of a KV beam for N = 7.3.
Vertical emittance is shownin red (upper curve) while horizontal
emittance is shown in blue (lower curve).
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FIG. 7. Vertica (upper red curve) and horizontal (blue curve)
rms emittances of aKV beam for N = 9.7. Increase of vertica
emittance due to the 1/2 coherent resonance.
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FIG. 8. (Color) Tune footprint of a KV beam after saturated
beam increase (at 100 turns) due to the coherent resonance for
N =9.7.
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Ref. [21]. Following the coherent resonance condition in
Eg. () our intensity should be increased by the approxi-
mate factor 4/3 to be at the middle of the coherent reso-
nance 12 = (),. The corresponding tune distribution for
N = 9.7 is shown in Fig. 5. The tune footprint is shown
just after one turn, but one can aready notice the spread
due to a resonance in the vertical direction. The associ-
ated increase of the vertical (upper curve) rms emittance
isshown in Fig. 7. Because of the fact that the beam size
was increased, the effect of the space charge was reduced,
as can be seenin Fig. 8 from the tune footprint of particles
after the increase of emittance saturated at 100 turns.

B. Nonuniform distributions

Once again, for nonuniform distributions the maxi-
mum space-charge tune shift is bigger than the one of a
uniform-density beam. As aresult, the difference between
the single-particle approach and coherent resonance
condition becomes even more pronounced. Similar to
the case of an imperfection resonance we perform PIC
simulations for various beam intensities to generate a
resonance-response diagram for a WB distribution. Our
major goa is to determine the onset of significant ex-
cursions in a beam-envelope response curve, and thus
understand whether there is any intensity gain due to the
coherent resonance condition in the vicinity of the structure
resonance. Figure 9 shows the response diagram for this
structure resonance. In Fig. 9, the green (short-dashed)
vertical lineindicates the incoherent space-charge limit for
aWB beam, while the pink (Iong-dashed) line corresponds
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FIG. 9. (Color) Response of the vertical beam envelope to a
coherent resonance with harmonic n = 12. PIC simulations for
the SNS lattice using WB beam distribution.
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to the incoherent space-charge limit of a uniform density
beam. Perhaps unexpectedly, the noticeable excursions in
the response curve are comparable to the one driven by
the imperfection errors in Fig. 4. With intensities already
higher than the incoherent space-charge limit, only a
modest beating of the envelopes is observed. Clarification
of such behavior in the vicinity of the structure resonance
is given in Appendix B.

C. Bunched beams and multiturn injection

For a coasting beam there is general agreement that the
coherent-resonance theory applies and that the resonance
condition is defined by the coherent frequencies. However,
severa effects should be taken into account (including the
effect of images) when one wantsto apply it to experimen-
tal observations. For bunched beams there is no good con-
ceptual analytic framework. For long ellipsoidal bunches
the transverse modes are decoupled from the longitudinal
mode, but it is not clear to what extent the synchrotron
motion will impact the resonance condition of the trans-
verse coherent modes. In some accelerators where syn-
chrotron motion is negligible (in the SNS the full injection
process of 1000 turns takes about one synchrotron oscilla
tion), it seems reasonable to expect that an impact of the
synchrotron motion will not be important. In fact, some
recent experiments and simulations for the bunched beam
inthe LANL PSR, wherethere is slow synchrotron motion
similar to the SNS, seem to support the above discussion
[16,17,22]. Here we explore these effects for machines
with slow synchrotron motion using a realistic beam of
the SNS.

6.25

6.2

6.15

6.1

6.05

vertical tune

5.95

595 6 605 61 615 62 6.25

horizontal tune

FIG. 10. (Color) Tune footprints at the end of 1052-turn injec-
tion process for the SNS beam. Intensities: N = 2 X 10'* (red),
N =3 X 10" (pink), and N = 4 X 10'* (green) in the absence
of magnet errors. SNS working point (v, vo,) = (6.23,6.20).
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FIG. 11. (Color) Tune footprint at the end of 1052-turn injection
for the SNS beam with N = 2 X 10" particles. SNS working
point (v, voy) = (6.23,6.20). Space-charge tune spread alone
(red) and combined effect of the space-charge and chromatic
detuning with dp/p = 0.7% (yellow).

Simulations are performed with 1052-turninjection for a
beam with momentum spread of dp/p = 0.7%. The tune
footprints of a final full intensity beam are plotted at the
end of the accumulation process. Here, plotted incoherent
tunes are obtained using the oreIT approach [15], which is
based on tracking the phase advance of each particle over
a single turn. Figure 10 shows footprints for three beam
intensities N =2 X 10 (red), N =3 X 10'* (pink),
and N =4 X 10'* (green). Here N is the number of
protons in the SNS beam. Note that a dp/p spread was
present in the smulation, but its effect on the tune spread
was excluded from Fig. 10 to have a clear presentation
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FIG. 12. (Color) Vertical rms emittances during the multiturn
injection process for threefinal intensities: N = 2 X 10'* (solid
red curve), N = 3 X 10'* (short-dashed, pink curve), N = 4 X
10 (long-dashed, green curve), in the absence of magnet errors.
SNS working point (v, voy) = (6.23,6.20).
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of the space-charge detuning discussed in previous sec-
tions. Modification of the space-charge induced footprint
by dp/p spread (which requires second-order matrix
tracking in the oreiT tune analysis) is shown, as an
example, for N = 2 X 10" in Fig. 11 and is discussed
elsewhere [20,23]. The time evolution of the vertical rms
emittances corresponding to Fig. 10 is shown in Fig. 12.
As expected, no effect of the resonance is observed until
the beam gets into the bandwidth (response curve) of the
coherent resonance, which occurs around N =~ 3 X 10'4,
(Note that this does not mean that no particle loss is
expected until N =~ 3 X 10'* because here only an effect
of the n/2 = 6 systematic resonance is considered with
al magnet errors excluded from simulations.)

V. ENVELOPE INSTABILITY

In this section we extend the discussion on the half-
integer resonance with the space charge to include the
topic of the envelope instability, which was introduced
in Ref. [24], for high current transport systems. To clar-
ify the difference, we point out that the half-integer reso-
nance is an integer resonance of the envelope (n = (Q,),
whereas the envel ope instability is a half-integer resonance
of the perturbed envelope with the matched envelope of
a periodic focusing system (n/2 = (),); the latter is an
instability with exponential growth from an initial per-
turbation (likewise there exists an exponentially damped
mode), while the former is independent from the initia
mismatch. Since the matched envelope adopts the peri-
odicity of the lattice this resonant instability occurs if the
zero-current phase advance per focusing cell is above a
guarter-integer, i.e., for oy > 90°. Space charge then leads
to an extended stop band starting slightly below o = 90°,
as was discussed in detail in Ref. [24]. In the absence of
space charge the envelope instability vanishes completely,
in contrast to the half-integer resonance, which is shifted
by space charge and also present without it. In this sec-
tion we discuss the envelope instability for severa cases:
(i) “superstructure” resonance, which is a direct analogy
with the envelope instability in the transport channel [24],
(ii) the envelope instability driven by the imperfection er-
rors near the quarter-integer tunes, and (iii) the envelope
instability driven by the imperfection errors near the half-
integer tunes. In these studies we have used the kvxyc
[14] code, which matches KV envelopes and determines
the eigenvalues (growth factors) of envelope perturbations.

A. Superstructure envelope instability

In a circular machine lattice, the envelope instability
occurs if the basic focusing cell is at the same time a
superperiod (superstructure) and 2v/n approaches 1/2,
similar to the case studied with application to the transport
channel. For a working point above »(,, = 6, asin the
SN, this would be the case if the basic 24 cells were all
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FIG. 13. (Color)Growth factors (per cell) for envel ope instability
of symmetric FODO cell with zero-current phase advance of
oo = 96° corresponding to v, = 6.4.

identical. As an example, we have calculated, in Fig. 13,
the instability stop band for a symmetric FODO cell with
oo = 96° corresponding to v, , = 6.4. It is noted that
the pronounced instability stop band with a growth fac-
tor above unity (likewise a damped solution with “growth
factor” below unity) starts for full-current phase advance
o < 88.84° (corresponding to a tune v, , = 5.92). The
strong flutter of the matched FODO envelope couples the
in-phase and out-of-phase eigenmodes and leadsto asingle
stop band. The behavior observed is similar to the case of
confluent resonance where phase locking occurs between
thetwo modes[14]. The stronger the beam envel ope flutter
(which may be a result of strong tune depression in high
current transport systems or vicinity of a strong structure
resonance in circular accelerator), the bigger the differ-
ence between the smooth approximation resonance con-
dition (coefficients 1/2 and 3/4 discussed in Sec. || A)
and an exact periodic solution. This is due to the nonlin-
ear dependence of the envelope frequency on amplitude.
Such amplitude corrections for the smooth approximation
frequencies were given, for example, in Ref. [25]. Also
note that such nonlinear corrections are functions of both
mismatch factor (flutter) and beam current. Asaresult, the
effect will be different when applied to high current trans-
port systems with significant tune depression of the order
of afew tens of a percent and typica high intensity rings
which have tune depression of a few percent only.

B. Imperfection quarter-integer resonance

The question may be raised as to whether the envelope
instability is aso driven by an imperfection term as op-
posed to the strong “structure resonance” discussed above
[26]. This might be expected, for example, in a lattice
with working point above 6.25, if a 25th harmonic gra-
dient error were present (n/2 = ),). We have taken
a constant focusing lattice with v, , = 6.333 and such
a gradient error (symmetric), which implies oy = 91.2°
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FIG. 14. (Color) Growth factors (per error period) for imper-
fection driven envelope instability with working point v, , =
6.333 and an error of 4% on harmonic n = 25.

per error harmonic. For the quite large error of 4% a
very narrow stop band of the out-of-phase eigenmode is
found at o = 89.59°, and a somewhat broader one of the
in-phase mode at o = 88.78°. Related to the full cir-
cumference, the corresponding tunesare v, , = 6.222 and
vyy = 6.165, which reflects the same coherent tune shift
as found above for the half-integer resonance (Fig. 14).
More importantly, we found that for errors of 2% and
1% the width of these stop bands decreases linearly with
the error strength, hence the instability gets detuned at a
very low level. A similar effect was found for afirst har-
monic error, which can drive the same mode, but yields
even more narrow stop bands. This allows the conclusion
that the imperfection driven envelope instability for work-
ing points above the fractional tune of 0.25 (likewise 0.75)
is ignorable. Note that the discussion above should not
be confused with the fourth-order resonance driven by the
octupolelike errors. In the latter case there is a coherent
resonance of the fourth-order beam mode.

To summarize, we find that the suggestion of Ref. [27]
to consider the envelope instability as a possible limitation
to working points above one-quarter (or three-quarter) in-
teger fractiona tunes should not be applied to the imper-
fection case of gradient errors. This has been confirmed by
corresponding PIC simulations in the presence of gradient
errors (no octupolelike errors) for atypical high-intensity
ring tune depression, using the SNS lattice, which did not
show any resonant behavior near a quarter integer frac-
tional tune (or n/2 = ,).

C. Imperfection half-integer resonance

For completeness of the discussion we have aso ex-
amined (with the kvxvyc code [14]) the detailed picture
of exact matching and appearance of an envelope insta-
bility (here of integer type n = (),) near the half-integer
imperfection resonance that was considered in Sec. |11 B
(with symmetric error of 1 X 1073). The result is shown
in Fig. 15, using on the abscissa the phase advance per
period of the error (1/9 of the circumference), hence the
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FIG. 15. (Color) Matched betafunctions (in unitsrelative to zero
space charge value), phase advance of envelope perturbations
(in units of degrees deviating from 360°), and integer (n =
,) envelope instability growth (in percent) for imperfection
half-integer resonance as in Fig. 2.

working point corresponds to 184°. The program deter-
mines the matched periodic envelope, which is plotted in
black. Again, no effect is seen for the single particle tune
passing through 180°. With increasing space charge, and
the out-of-phase mode phase advance approaching 360°
(0° in the graph), the matched envelope develops an in-
creasing flutter due to the gradient error (response curve of
the n = (), resonance). The envelope beating, described
as resonance curve in Sec. |1 (with initial envelope deter-
mined by ignoring gradient error) must therefore be inter-
preted as oscillation about this new envelope matched to
the error. The region where the out-of-phase mode phase
advanceisexactly 360° isassociated with asmall stop band
of the envelope instahility (of the integer type n = 5, in
contrast with the half-integer envelopeinstability discussed
in Secs. VA and V B). The relatively large width of this
stop band can be understood as aresult of the flutter of the
matched envelope due to the vicinity of the half-integer
imperfection resonance. There is, however, an uncertainty
in the left boundary of this stop band since the program
did not converge on a matched solution in the gap between
175.55° and 174.1°.

V1. DISCUSSION

An application of the coherent-resonance theory allows
some increase in the space-charge limit due to the on-
set of the resonance at higher intensities than expected
from the single-particle approach (incoherent space-charge
tune shift). The largest advantage occurs for the split-tune
working point due to the difference between the smooth
approximation coefficients 8/5 vs 4/3 in the coherent
space-charge limit condition for a round beam, with a =
b. For areal machine such coefficients should be calcu-
lated more accurately by solving the envelope equations
with corresponding transverse beam parameters.
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For the split-tune case, an experiment was recently
performed at the LANL PSR [22]. Subseguent numerical
simulations confirmed that the observed beam broaden-
ing is due to the coherent haf-integer resonance [16].
Also, both PIC simulation and direct solution of the
envelope equations showed the nonlinear response of the
beam to this resonance [17]. Similar experiments were
performed at other accelerators as well in an attempt
to achieve higher beam intensity. For example, at the
CERN Proton Synchrotron (PS), Cappi et al. [28] ob-
served significant emittance growth at intensities higher
than predicted by the space-charge limit based on the
incoherent-tune approach. In fact, the data collected from
various high-intensity machines [29,27] show that the
experimentally achieved space-charge tune shift isin good
agreement with the coherent space-charge limit [30].

In this paper we demonstrated the applicability of the
coherent resonance space-charge limit for the SNS case.
We aso extended general two-dimensional anaysis to a
bunched beam and multiturn injection process. In addi-
tion, it was found that no strong intensity limitation is
expected in the vicinity of the resonance with a structure
harmonic n = 12 of the SNS lattice. Subsequent simula-
tion in the presence of various magnet errors has shown
that the main intensity limitation is expected to be due
to the skew-quadrupole sum resonance. This prevents us
from increasing intensity significantly beyond N = 2 X
10'* for the working point (voy, voy) = (6.23,6.20) unless
a correction scheme is applied or the working point is ad-
justed accordingly. Note that the coherent resonance con-
dition is applicable to coupling resonances as well [12]. In
fact, our studies of the skew-quadrupole sum resonance in
the presence of space charge showed the beam envelopere-
sponse similar to the one-dimensional resonance presented
in this paper. These studies will be reported in a separate

paper.

VII. SUMMARY

In this paper we discussed the space-charge limit in high
intensity rings based on the coherent resonance condition.
The coherent resonance condition allows some increase in
the space-charge limit due to the onset of the resonance at
higher intensities than expected from the incoherent reso-
nance condition. Application of this condition both to the
imperfection and structure resonances are discussed. We
explore the applicability of such an effect to a redlistic
bunched beam and multiturn injection process. 1n addition,
we address the issue of the envelopeinstability inacircular
machine.
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APPENDIX A: RESPONSE DIAGRAM AND
RESONANCE CROSSING

The response curves in Figs. 2—4 show a typical non-
linear response of an oscillator to a resonance. Both the
phase-space diagrams and response curves can be obtained
by applying the phase-amplitude averaging technique [31]
and plotting solutions for the stationary fixed points. This
technique was applied to the envelope eguation in the
vicinity of the half-integer resonance by Smith [4] and
later systematically described by Sacherer [5]. We use
Sacherer’s notation for the fixed points to describe the
response curves. Consider, for example, the blue (upper)
curvein Fig. 3. A sudden jump in the envelope excursion
for the critical intensity parameter corresponds to the fact
that for intensities lower than the critical value, there is
only one stable fixed point S~ while for intensities above
the critical value there are two stable fixed points (S, S ),
with only S* amplitudes plotted above the critical value
in Fig. 3. For the critical intensity, in the location of the
jump, S~ corresponds to the upper point of the jump, S*
to the lower point, with U™ located in between. Here U™
stands for the unstable fixed point, S~ is the large-
amplitude stable fixed point, and S* is the small-
amplitude stable fixed point. Configuration points near
S* and S~ oscillate with small amplitudes about these
points, whereas points near U+ may follow the separatrix
and make much larger excursions.

A consequence of such response curves for situations
with a slow adiabatic change in the intensity parameter 1
is a different beam behavior depending on the direction
in which the critical value is crossed. For the beam in
the ST state, if 7 is decreased (for example due to the
acceleration), the beam envelope jumps to the top of the
response curve when the critical value is reached, which
results in oscillations around S~. As can be seen from
Fig. 3, the maximum excursion corresponding to S~ de-
creases with further decrease of the intensity parameter 1.
As aresult, one can cross the resonance if the beam pipe
aperture allows the maximum envel ope excursion given by
S™. Clearly, the maximum of S~ decreases with the reso-
nance correction, as demonstrated in Fig. 3. In the other
direction of increasing I, the beam envelope continues to
grow aong the S~ state which results eventually in abeam
loss.

This effect of resonance crossing is demonstrated in
Figs. 16 and 17 for the 1073 error case of Fig. 3. We
sweep over the stop band of the coherent resonance by
changing the space-charge strength. Thisis done by para-
metrically increasing the perveance in the envelope equa-
tions (as might occur during rf capture) or, aternatively, in
the opposite direction (during acceleration, for example).
The resulting single-particle fractional tune is shown with
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FIG. 16. (Color) Crossing over the stop band in the direction
of increasing space charge. Normalized y envelope in red with
fractional depressed tune v, (blue) decreasing linearly in time
from 4.48 to 4.37.
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FIG. 17. (Color) Normalized y envelope (red) during crossing of
resonance stop band in the direction of decreasing space charge
[fractional depressed tune v, (blue) increases linearly in time
from 4.37 to 4.48].

asolid blueline. The vaue of the fractional tune where the
small amplitude envelope resonance with n = 9 occurs is
shown with adotted line at », = 4.4365, corresponding to
I = 1.635 in Fig. 3. In the first case, the envelope oscil-
lation maintains the condition of the resonance far beyond
the small amplitude resonance condition (near turn 60) by
steadily increasing its amplitude; in the second case, the
envelopeincreaseis limited as the system jumps across the
resonance near the exact resonance condition (near turn 80)
with a bounded envelope increase. We refer the interested
reader to Ref. [5] for a detailed mathematical description
of this phenomenon and to Ref. [19] for the experimental
studies of this effect.
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APPENDIX B: IMPERFECTION AND STRUCTURE
RESONANCE

As discussed in Section 11, the width of beam response
to a coherent resonance is a function of amplitude of in-
troduced imperfection error. As aresult, for a very large
magnitude of an error a noticeable beam response (enve-
lope beating) may start at intensities even lower than the
incoherent space-charge limit. This, of course, can be
determined by measuring the magnitude of the errors.
Structure resonance may be regarded as an imperfection
resonance with a large magnitude of an error. How large
the amplitudes of specific structure harmonics are depends
on the lattice. One superperiod of the SNS lattice for
the working point (v, voy) = (6.23,6.20) is shown in
Fig. 18. Fourier anaysis of the vertical beam envelope
showed that the amplitude of harmonic n = 12 is compa-
rable in size to the amplitude of an error harmonic used
in Sec. I11, which explains modest width of the beam re-
sponse curve near the structure resonance with this har-
monic. For comparison, in the horizonta plane, Fig. 18
shows two strong peaks in each superperiod. Thus, the
large amplitudes of the structure harmonics at » = 4 and
n = 8 are expected. Fourier anaysis of the horizontal en-
velopes shows that the magnitude of these structure har-
monics is approximately a factor of 5 stronger than the
amplitudes of other nearby structure harmonics. As a re-
sult, for the SNS lattice, the coherent resonance with har-
monic n = 12 is not expected to introduce a significant
intensity limitation which is in agreement with our PIC
simulations shown in Fig. 9.

To summarize, the structure half-integer resonances are
potentially very dangerous, and, if possible, the working
point in the vicinity of such resonances should be avoided.
It appears, however, possible to have a working point in
the vicinity of a structure resonance without significant
intensity limitation if the relevant harmonic in the lattice
is sufficiently weak.

30
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FIG. 18. (Color) Horizontal (red) and vertical (green) beta func-
tions of the SNS lattice with (vq., voy) = (6.23,6.20) for one
superperiod.
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