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Abstract

The interaction of shock waves with spherical and perturbed spherical layers provides
an interesting and important class of problems. We present recent results for these and
related planar geometry problems. We address the following issues:

1. The accuracy of different numerical solution methods,

2. The magnitude of numerical solution errors and their causes,
3. The development of the instabilities,

4. Reduced descriptions for chaotic flows.

1. INTRODUCTION

We are concerned with the interaction of shock waves with each other and especially
with fluid density discontinuities (boundaries of fluid layers) in planar and spherical ge-
ometries and in perturbations of these geometries. The perturbed problems include clas-
sical fluid instabilities of steadily accelerated density jumps (the Rayleigh-Taylor or RT
instability) and the impulsive or shock accelerated instability (the Richtmyer-Meshkov
or RM instability), also for a fluid density jump. These instabilities arise in a number
of contexts, including inertial confinement fusion, supernova explosions, supersonic fuel
mixing in a scram jet, and the formation of thunderheads in meteorology and of geological
salt domes. Because of the wide interest in these phenomena, the subject has an extensive
history [1,2].
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From a numerical point of view, the primary difficulty in this class of problems lies
with the contact discontinuity, or density jump. The shock waves can be resolved with
about 3 mesh cells; the width of the numerical shock wave does not grow with time.
However, the contact discontinuity has a numerical width of 5 cells initially and in many
schemes this number grows (for example with the 1/3 power of the number of time steps).
Moreover, these fluid interfaces are highly complex. In fact, the flow starts as unstable and
shortly becomes chaotic. Thus the under resolved fluid interfaces become the dominant
feature of the flow. In addition, there is a nonlinear coupling, in that the dynamics of
a overly diffused interface is not the same as a sharply resolved one. This fact is easy
to understand, as it is the density contrast which drives the instability growth in the
first place. The diffused interface of an under resolved chaotic flow has a significantly
reduced density contrast, and thus a lower instability growth rate. Our preferred solution
method is to track the fluid discontinuity. It is given independent degrees of freedom, and
moves through the computational mesh with its own dynamics, dividing the fluid flow
into distinct domains, each containing a single fluid type [3-7].

The gold standard for assessment of errors in numerical solutions is comparison to
experiments. In addition, for sufficiently simple problems, accurate solutions can be
obtained with fine enough grids and errors can be assessed by comparison. The systematic
study of numerical errors, as computed on realistic grids, is not a standard operating
procedure for computational fluid dynamics. We go beyond this, in offering a probabilistic
model of solution error, suitable for use in uncertainty quantification. Here the goal is
to establish uncertainty (e.g. error bars) for a numerically based scientific prediction,
including data uncertainty, numerical or physical model uncertainty, and, as addressed
here, numerical solution errors and input uncertainty.

Because of the complexity of the chaotic flow we study here, there is an interest in
reduced descriptions of the flow. For many purposes, a detailed pointwise description of
the chaotic flow is not needed. This is fortunate as the flow is highly unstable and not
reproducible. Rather, statistical averages of the flow are important. These, we hope,
will be stable, reproducible, and with luck computable directly. The reduced descriptions
of the flow thus involve averaged quantities. Averaging of a nonlinear set of equations
opens the troublesome issue of closure relations, which have been much discussed in the
literature and for which we offer novel solutions.

2. COMPARATIVE ACCURACY OF NUMERICAL METHODS

We studied the relative accuracy of tracked and untracked simulations of spherical
implosions and explosions [8-10], computed in a two dimensional (r, z) axisymmetric
(cylindrical) geometry. The exact solution came from a one dimensional purely radial
computation, performed with high accuracy. The main comparison was between our
Front Tracking code, FronTier and a conventional higher order Godunov code based on a
TVD scheme, also of our own construction. The problem was initialized with a spherically
symmetric contact (density discontinuity) and approaching it either an inward or outward
moving shock wave. The problem was carried through the shock-contact interaction,
which produces a transmitted shock wave and a reflected wave. The latter may be either
a shock or a rarefaction. Of these two waves, one moves outward and one inward until it
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reflects off the origin and eventually reshocks the deflected contact interface. The problem
was terminated before this reshock event occurred. For comparable accuracy of solutions,
we found that the untracked simulation required between 4 and 8 times as fine a mesh in
each linear dimension of the computation as was needed for the tracked simulation. The
tracked and untracked simulations used almost identical time per computational space
time mesh cell, and thus the tracked simulation was between 4° = 64 and 8% = 512 times
as efficient for comparable accuracy. Projecting these results to a full 3D simulation, the
efficiency of the tracked solution is still larger.

In Fig. 1, we display side by side the density plots of the tracked and untracked solutions,
both computed with a 100 x 100 grid. In Fig. 2 we show the L, error as a function of time
for 4 grid levels, 100 x 100 to 800 x 800 for both tracked and untracked simulations. Note
that coarsest grid tracked error is approximately comparable to the finest grid untracked
error in this graph, as asserted above.

Figure 1. Density plots for a spherical implosion simulation with an unperturbed interface.
The left image shows a contact shocked by implosion shock wave in the untracked case.
The right image shows the tracked case at the same time. The grid size 1s 100 x 100.

3. ANALYSIS OF ERRORS

We continue with the study of a spherical implosion. Here we develop a probability
model for the errors [11-13]. While the problem is simple enough that this is not a great
computational burden, we are interested in more complex problems for which the develop-
ment of an probability model for numerical errors would be computationally limiting. For
this reason, we seek to understand the error and to model its structure. The high point
of this analysis is a formula which expresses the error as a sum of individual terms arising
from individual wave interactions. These wave interactions are also solved in an isolated
setting to construct a probability model for the transmission and creation of errors within
each interaction. Our analysis depends on this error analysis for each interaction, treated
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Figure 2. Comparison of tracked and untracked shock implosion (left) and explosion
(right) simulations. The L; error as a function of time is plotted for 4 grid levels and for
both tracked and untracked simulations.

in isolation from the other interactions. Thus the model has as its scientific basis the
picture that the errors are either introduced initially (due to uncertain initial conditions)
or are created within the simulation at wave interactions only. Between interactions, the
errors propagate in a predictable manner. For a planar geometry, the errors are constant
between interactions, while for a spherical geometry, the errors grow (if the wave which
carries them is moving inward) by a power law in the radius. Similarly outward moving
waves and their errors weaken by a power law.

We postulate a 10% uncertainty in the initial conditions, and thereby define an ensemble
of simulations and of errors, to be analyzed from a probabilistic point of view. The
ensemble is solved on two grid levels, with 100 and 500 cells, in a 1D spherical geometry,
and the error is determined by comparison to an ultra fine grid of 2000 cells. The model
for the mean total error after the reshock interaction, constructed as outlined above,
is generally accurate to one or two digits, with an exception for the coarsest level of
simulation and the study of the wave position error. The model, applied to construct
the variance of the error, understates the STD by a factor generally between 1.5 and
2, for causes not presently identified. Using the model, the total error is a sum of six
terms, each corresponding to a pattern of wave interactions and transmissions. Of these
diagrams, two correspond to initial error, following different transmission patterns, and
four correspond to errors created within the solution and transmitted to the output of
the reshock interaction, where the errors are analyzed. All computations are untracked.
The errors are characterized through their mean and standard deviation. By assumption,
the initial uncertainty has mean zero. The models for the transmission of error are all
linear. This is perhaps surprising in view of the fact that the interactions are highly
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nonlinear, but results from the fact that the errors are analogous to perturbations. The
linear error transmission model is essentially the first order (linear) variational formula for
perturbations of the solution. Errors in this linear model were analyzed previously and
generally found to be small. As a result, the mean error associated with the initial error
and transmitted to the output of the the reshock interaction is also zero, and only four
terms contribute to the mean error. All six terms contribute to the standard deviation.
In Fig. 3 we show the six diagrams contributing to the error at the output of the reshock
interaction. See also [14].
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Figure 3. Schematic graphs. Left: the space-time trajectories of the principal waves, as
detected by our wave filter program from the untracked solution. Here IS and OS denote
inward and outward moving shocks, C is a contact and IR is an inward rarefaction. Right:
all six wave diagram contributions to the errors or uncertainty in the output from a single
Riemann solution, namely the reshock interaction (numbered 3 in the left frame) of the
reflected shock from the wall as it crosses the contact. The numbers labeling the black
circles refer to the Riemann interactions contributing to the error. The letter Z in the
first two diagrams indicates input uncertainty.

All six terms contribute to the variance and its square root, the standard deviation o.
It is customary to regard 420 as the size of the error bars to be added to the simula-
tion. Additionally, the mean error is subtracted from the simulation value to correct for
systematic bias in the coarse grid simulation. In Fig. 4, we plot the relative sizes of the
variance for each of the 6 graphs. Note that the two associated with input uncertainty are
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hatched and the others are solid gray scales. We see that for a 500 cell grid, the dominant
error comes from the initial uncertainty, while for the 100 grid over 75% of the error arises
within the numerical simulation.
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Figure 4. Variance of error or uncertainty associated with each of the six wave diagrams
contributing to the post reshock wave strength for the contact wave. The two circle graphs
represent 100 and 500 cell simulations, respectively. The two diagrams associated with
input uncertainty are shown in hatched gray. Note that these diagrams are dominant for
the 500 cell simulation, but that the sum of the created errors are dominant for the 100
cell simulation.

4. INSTABILITY PHENOMENA

We now address the much more difficult question of the perturbed interface problem,
with the ensuing instability growth and chaotic flow. Before we can apply the above
methods of statistical error analysis, we require a numerical solution procedure which is
O(1) correct. This simply stated and seemingly elementary requirement has proven to be
surprisingly difficult for the scientific community. Our present results apply to a planar
geometry. After the first correct RM simulation (to achieve agreement with experimental
data) by FronTier [15,16], a three way code comparison, with experimental data from
laser acceleration and a theoretical model all achieved agreement for a single mode 2D
RM instability [17]. This result is very encouraging, but the mesh resolution used to
achieve it was not, in view of the desire to compute the much more difficult instabilities
in 3D and for fully chaotic (as opposed to single mode) flows. For the related RT chaotic
instability in 3D, extensive studies have shown that most simulation codes compute an
instability growth rate which is below the experimental value by about a factor of 2,
while the FronTier values [18-20] are consistent with the experimental range of values,
but on the high side. We have analyzed the tracked and untracked simulations and found
a simple explanation of this difference.

Most untracked simulations are performed on an under resolved grid, so that the width
of the diffused interface is of the same magnitude as the unstable fingering structures
in the flow. As a result, the diffusion is in effect global, and the density contrast is
reduced, by about one half, thereby explaining the factor of 2 reduction in the instability
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growth rate for the diffusive calculations [19,20]. This explanation is totally quantitative.
The diffusive mixing rate leads to a corrected or renormalized density contrast, and a
new determination of the mixing rate, in terms of the density contrast as observed in the
simulation. This error-corrected mixing rate for the untracked simulations is in agreement
with experiment, leading to agreement for all experiments, all simulations, and with theory
[21].

While there appears to be growing acceptance of the mass diffusion explanation for the
discrepancy between most (untracked) simulations and experiment, we should mention an
alternate theory, that the experiments are contaminated by long wave noise, which drives
the growth rates higher. This theory requires comparable and experimentally reproducible
noise levels in four completely different series of experiments, based on different physical
methods of acceleration, but it also has an additional problem. In truth, we believe
that both ideas can be fractionally correct and each contributes to the total observed
growth rates. But since the quantitative method of mass diffusion error correction yields
agreement of simulation with experiment, there seems to be little room for additional
correction from experimental long wave length noise. We expect that the noise will play a
smaller role, perhaps explaining the differences in growth rates observed among different
experiments.

The error correction of the mixing rate based on an observed density contrast was also
applied to highly compressible RT mixing. Here the compressibility leads to a strat-
ification of the density field as a function of the vertical dimension (z). The density
stratification destroys self similarity of the flow, but the time dependent density contrast
interpretation of the mixing rate restores self similarity, so that scaling laws continue to
apply to the highly compressible case. With these error-correcting (for diffusion) and
stratification-correcting (for compressibility) methods of data analysis, tracked and un-
tracked simulations agree. They display a strong dependence on compressibility, with a
doubling or tripling of the mixing rate in comparison to the much studied and measured
incompressible values.

The significance of this extended self similar analysis for compressible flows is potentially
large, as many interesting flows are highly compressible, and (as we see in the next section)
the growth rates of the self similar flows play a large role in the parametrization (closure)
of the reduced description simulations.

5. REDUCED DESCRIPTIONS OF CHAOTIC MIXING

Chaotic flows display a wealth of detail which is not reproducible, neither experimentally
nor in simulations. Generally speaking, this detail is not relevant, and fortunately, only
the statistical averages of the detail are of importance. Thus direct numerical simulation
(DNS) of mix, as discussed in the previous section, gives more information than is needed,
and information which in detail cannot be reproducible. Since we really want the averages
of the DNS simulations, the natural question is to find averaged equations which will
compute the averaged quantities directly, without use of the difficult intermediate DNS
step.

Averaged equations arise in many areas of science. Generally, when the original equa-
tions are nonlinear, or when the coefficients of a linear term are to be averaged, lengthy
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discussions of how to formulate the averaged equations ensue. The issue is that nonlinear-
ities do not commute with averaging, so the average of a nonlinear function is not equal to
the function evaluated at the average value of its argument. In addition, the phenomena
at a physics level are much richer, as the averages depend on the averaging length scale.
We wish to average over each phase, and end up with multi-phase flow equations. The
nonlinear closure terms will then reflect the forces, etc., exerted between the two phases.

For mix at a molecular level, all the nonlinear closure issues occur in the equation
of state, which must describe the pressure and other thermodynamic functions of an
atomic mixture of multiple species. In this case all species have common velocities and
temperatures. If the mixing is less fine grained, we call the problem chunk mix. The
complete first order multiphase averaging of the microphysical equations leads to such
a model, in which each species has separate velocities and thermodynamics (pressure
and temperature). We have recently found a closure of this type which preserves all
requirements of an obvious physical nature: required boundary conditions at the edges
of the mixing zone, conservation of species mass, total momentum, total energy and for
smooth flows, phase entropy [22]; see also earlier work [23,24] and references cited there.
The only parameters to be fixed in this closure are determined by the growth rates for
the edges of the mixing zone.

An additional feature of the closure [22] is a coupling between the growth rates of the
two edges (bubble and spike, or penetration of light fluid into heavy and the reverse)
of the mixing zone. Ounly one of these growth rates is independent according to this
theory. Earlier studies of incompressible flow, both theoretical and based on analysis of
experimental data reached the same conclusion [25-28].

Whether the two pressure closure mentioned above (which is hyperbolically stable for
time propagation) is used or the more common equal pressure closure (which requires a
minimum level of diffusion for stability) is used, the closure contains parameters. The
parameters are set to obtain agreement of the overall growth rate with experiment for self
similar mixing. Thus extension of self similar mixing to a strongly compressible regime,
with modified self similar growth rates, implies a strongly compressible modification of
common closure parameterizations.
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