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Abstract

We present a Rayleigh-Taylor mixing rate simulation with an acceleration rate
falling within the range of experiments. The simulation uses front tracking to pre-
vent interfacial mass diffusion. We present evidence to support the assertion that
the lower acceleration rate found in untracked simulations is caused, at least to a
large extent, by a reduced buoyancy acceleration due to numerical interfacial mass
diffusion. Quantitative evidence includes results from a time dependent Atwood
number analysis of the untracked simulation, which yields a renormalized mixing
rate coefficient for the untracked simulation in agreement with experiment.

Since Read and Youngs [5, 6] published the first experimental study of Rayleigh-
Taylor instability with a randomly perturbed fluid interface, attention has been drawn to
the non-dimensional acceleration rate of the bubble envelope.

h(t) = aAgt?, (1)

where h is the height of the bubble envelope, A is the Atwood number, g is the gravity
and ¢ is time. Read and Youngs show that the acceleration rate « is almost a constant,
with a ~ 0.063 — 0.077 in 3-D experiments. The experiments have been repeated by
various authors with different apparatus, and similar values of a have been obtained; we
mention the experiments of Dimonte and Schneider [1, 2, 3], giving o = 0.05 £ 0.01.
Most researchers report a time dependent, decreasing value for o, ranging from 0.015
to 0.03 from numerical simulations. These simulations are from computational codes
using numerical schemes with interfacial mass diffusion. We have compared numerical
simulations using a high resolution front tracking code FronTier with zero interfacial mass
diffusion to our own simulations using an untracked TVD-level set code with interfacial
mass diffusion similar to the others. We also introduce an analytic study of the effects of
mass diffusion on buoyancy reduction and we predict the numerically observed reduction
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Figure 1: Mixing growth comparison of a FronTier (nondiffusive) with a TVD (diffusive)
simulation. For the TVD simulation, two grid levels are shown, the coarser being 642 x 128.
In all cases, h is the height of the 1% volume fraction contour, and the initial mean
height of the interface is 4. Left: h vs. A(t = 0)gt? for FronTier and TVD. Right: h
vs. 2 [} J3v A(s)gdsds, for FronTier and TVD. The solid line represents the FronTier
simulation, the dashed line is the finer grid TVD simulation and the dotted line is the
coarser grid TVD simulation.

in « for untracked simulations. Our main result is that all values of a (theory, experiment,
simulation) are consistent if the diffusive calculation of « is renormalized to account for
mass diffusion.

An earlier comparison shows that FronTier simulations produce values for « close to
agreement with experiment while untracked TVD simulations produce low values for «
[4]. These comparisons were limited in the simulation time and in the penetration depth
of mixing achieved. Here we extend the comparison to a later time, comparable to most
other simulations.

The ¢t = 0 interface is constructed out of Fourier modes with random amplitudes and
frequencies in the range of 8 — 16 modes per computational domain width. See [4] for
further information concerning these simulations. The 2 x 2 x 8 computational domain
used here allows computationally efficient late time, deep penetration simulations. Within
this computational aspect ratio, the Fourier mode numbers represent a balance between
the conflicting requirements of spatial resolution, favoring low numbers of modes, and
late time statistical validity, favoring large numbers of modes. The simulations used a



Figure 2: Cross sectional plots showing density on a common rainbow color scale. The
light fluid is blue and the heavy fluid is red. The ratio of extreme density values is 3.3:1.
The right frames show a higher slice in the z direction. Top: FronTier, bottom: TVD.
The simulations are shown at comparable penetration distances, but at different times
(Agt? = 23 for FronTier, Agt? = 66 for TVD).

1282 x 512 grid. Our simulations, thus balanced, have about 12? = 144 initial bubbles
and a grid resolution of about ten cells in each dimension per initial bubble.

A comparison of the mixing rates for the two simulations is shown in Fig. 1 (left),
plotting bubble height h vs. Agt?. FronTier has a distinctly higher growth rate than does
the interface mass diffusive TVD simulation. The value of h(t) is the difference between
the t = 0 bubble height and the time ¢ bubble height. The latter quantity is defined in
terms of a 1% volume fraction, i.e., the greatest height at which the fluid is 99% heavy
and 1% light according to the front tracking front or the TVD level set. This definition
is somewhat unstable statistically, and a few spurious oscillations associated with the
definition were removed in the plots of Fig. 1.

Mass diffusion is a common feature of most untracked simulation codes. Due to the
interpolation constraint, numerical schemes (finite difference, finite volume) can have only
first order accuracy in their spatial derivatives near a discontinuity. For a contact discon-
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Figure 3: Time dependent A (Atwood number) for fine grid FronTier, fine grid TVD, and
coarse grid (642 x 128) TVD. At time ¢ = 0, all three simulations have A(t = 0) = 0.5.
This plot displays the reduced buoyancy of the diffusive TVD simulations as a function
of time.

tinuity, the corresponding characteristic is linear for the wave equation of the Riemann
invariant

%—f-ﬁ—ug—::& where w=p—§ ) (2)
and so the truncation error will spread to the interior region. A first order scheme is more
diffusive if the time step At is much below the limit set by the CFL condition. Therefore
the untracked simulation is particularly diffusive across the contact surface when the fluid
is almost incompressible, because in such case, the At is dominated by the characteristic
speed |u + ¢| which is much larger than that of |ul.

In order to understand the difference between the two simulations, we compare the
cross sectional density plots in a series of horizontal slices from the bubble (upper) portion
of the mixing region. Fig. 2 shows the cross sectional density plots in these simulations.
Observe that there is a substantial smearing-out of the density across the boundary be-
tween the two fluids in the untracked TVD simulation, while the FronTier simulation
maintains a sharp boundary with a discontinuous density profile throughout the sim-
ulation. As a further difference, we note the fine scale structure size in the FronTier
simulation in comparison to the TVD simulation.

We compute an effective Atwood number A(t) as a function of time for the TVD
simulations. This is determined from the highest and lowest densities in a horizontal
slice, with the resulting time and space dependent Atwood number averaged over heights
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Method « Reference

Experiment 0.05-0.077 | [5, 6, 1, 2, 3]

FronTier simulation (unrenormalized) | 0.07 This paper (Fig. 1, left); [4]
FronTier simulation (renormalized) 0.07 This paper (Fig. 1, right)
TVD simulation (unrenormalized) 0.035 This paper (Fig. 1, left)
TVD simulation (renormalized) 0.06 This paper (Fig. 1, right)

Table 1: Values of o determined from experiment, theory, and simulation. All values
are consistent except the unrenormalized TVD value (with « determined from a time
independent ¢ = 0 Atwood number).

in the upper third of the mixing zone at a fixed time to get an Atwood number dependent
on time alone. In Fig. 3, we plot A(t) vs. t for three simulations (fine and coarse grid
TVD and fine grid FronTier). The time dependence of A(t) in the FronTier simulation is
caused purely by (small) compressibility effects. For the mass diffusive TVD simulation,
the initial density contrast, A(t = 0) = 0.5, is almost completely washed out; the earliest
time displayed shows A(t = 2) =~ 0.15. As new pure (heavy and light) fluid is injected
into the mixing region, the effective Atwood number increases, but it is still reduced to
about A = 0.3 on a time averaged basis, or nearly a 50% reduction relative to its initial
value.

To compensate for the time dependent Atwood number A(t), we define an effective
alpha, aes &~ h/2 [ [ A(s)gdsdt (see Fig. 1, right). Specifically, « or aeg is defined here
as the slope of the straight line joining the beginning and end of the A(t) curve in Fig. 1.
This definition, although somewhat arbitrary, is conventional, and thus allows comparison
to the results of others. We observe an improved comparison between FronTier and TVD
and between TVD and experiment. Note that ceg lies within the range of experimental
values; see Table 1. On this basis, we can state that the diffusive buoyancy renormalization
of « is capable of resolving existing discrepancies among simulations, between diffusive
simulations and nondiffusive experiments, and with theory.

The reduced mixing rate due to unphysical numerical diffusion can be understood
from Fig. 4. The left frame represents an immiscible bubble of radius 7. The central and
the right frame assume that this bubble is smeared out numerically to a radius R while
the total mass inside the sphere of radius R is conserved. The buoyancy forces

A3

h=f=—3

(prr — pL)g (3)

for the bubbles in frames (a) and (c) are the same. However, due to the difference between
the mass in the nondiffused bubble (a) and the diffused bubble (c¢), the two acceleration
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Figure 4: Left: Unmixed bubble of light fluid. Center: Unmixed bubble and heavy fluid
mass which will be mixed with it. Right: Mixed bubble.

rates

:/)H—PLg S gy = PH — PL g (4)

pL ot (% -1)pn

are different. As a result of the mass diffusion, the buoyancy force is distributed to a
larger amount of mass, thus reducing the acceleration of the bubble.
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