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Abstract

We present a numerical model of two fluid mixing based on hy-
perbolic equations having complete state variables (velocity, pressure,
temperature) for each fluid. The model is designed for the study of
acceleration driven mixing layers in a chunk mix regime dominated
by large scale coherent mixing structures. The numerical solution of
the model is validated by comparison to the incompressible limit. For
the purpose of this comparison, we present a newly obtained ana-
lytic solution of the pressure equation for this model and an analytic
constraint derived from the asymptotic limit of the compressible pres-
sures, which determines uniquely the incompressible pressure solution.
The numerical solution is also validated by a mesh convergence study.
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1 Introduction

1.1 Fluid Mixing

Fluid mixing is important to technology, for example in pipeline flow and
the performance of inertial confinement fusion reactors; it is important to
the description of natural phenomena, as in meteorological temperature in-
version driven updrafts and the geological evolution of salt dome formations;
it is important to basic science in the evolution of supernova explosions.
Fluid mixing is a multiscale phenomena, with active length scales from the
submillimeter microscale of diffusive mixing to laboratory, geophysical or as-
trophysical scales of macroscopic flow. It is neither possible nor desirable to
simulate all fine details accurately. There are neither the computer resources
nor the initialization data to allow resolution of fine details, while for many
purposes statistical averages at a macroscopic level are sufficient, and offer a
more understandable description of the multifluid behavior. For this reason
we seek averaged, or coarse grained equations, to describe the flow behav-
ior of a multifluid mixture without direct simulation of all its microscopic
details.

From the point of view of averaged equations, a multifluid mixture is a
complex fluid with extra internal degrees of freedom. Starting from hyper-
bolic microscopic equations of two immiscible fluids, we consider averaged
equations which are also hyperbolic, and which thus have only real char-
acteristic speeds. The derivation of averaged equations leads to undefined
averages of products or nonlinear functions of the primitive variables. These
quantities must be modeled, i.e. expressed approximately as a function of the
averaged flow quantities directly, to close the system of equations. Closure is
a physics level identity, independent of the averaged governing equations. It
restricts the applicability of the resulting system to the specific flow regime
for which this identity has an approximate experimental validity. Multifluid
flows possess a number of distinct flow regimes, which call for distinct clo-
sures, further complicating their study.

We are concerned with chunk mix [6, 9], a term we have introduced to
describe a flow regime characterized by large scale coherent mixing structures
(bubbles of light fluid, etc.), on the order of the thickness of the mixing



zone, and by short time scales, so that relaxation terms are omitted [3,
26, 27, 29, 6]. Alternate models and closures are presented in [41, 17, 44].
Averaged flow models differ primarily in the order of statistical moments
carried as dependent solution variables (we use a first moment closure), in
the completeness of the multiphase treatment (we use a fully multiphase
formulation in that no fluid variables are shared, or averaged in common
between the phases), and in the choice of specific closures, which usually
correspond to some specification of the flow regime.

The closure used here is based on an assumed absence of internal length
scales within the mixing zone, which is a mixing zone homogeneity assump-
tion. It assumes independent thermodynamic variables (pressures and tem-
peratures) for each phase, in addition to independent velocities. Its appli-
cability includes rapid acceleration driven mixing processes for a chunk flow
regime. For this purpose, we omit relaxation source terms which equilibrate
pressures and velocities between the phases. We refer to [6] and the references
therein for more information on this model and its closure assumptions.

The main result of this paper is the presentation in §2 of a numerical
algorithm for the solution of the chunk mix multiphase fluid flow model with
explicit tracking of the interface between the pure and multifluid regions. In
83 we find a closed form solution for the incompressible 1D pressure of this
model, thereby completing the closed form solution of the incompressible 1D
equations [28].

The model depends on the motions Z(t) of the edges of the mixing zone.
Since the Z), are not well characterized for compressible flows, we explore the
dependence of the solution on the 7. In fact, most of the solution variables,
suitably scaled, are nearly independent of the 7. This is not the case for
the pressure differences. These differences appear in the exact (momentum)
equation for the edge motion. In §4.1, this fact is further related to the
modeling of the drag and added mass terms in phenomenological buoyancy
drag equations for the edge motion. The connection of the pressure difference
to key terms in these buoyancy drag equations provides a physical basis for
the sensitive dependence of the pressure difference on the edge motion.

Comparison to the analytic solution allows a numerical study of the in-
compressible limit for compressible flows, as a validation test of the numerical
algorithm presented here. See §4.2. Validation of the algorithm is also per-
formed in §4.3 through mesh convergence studies. Averaging of nonlinear
equations, even the averaging of equations in conservation form, often leads
to nonconservative equations. The present equations are an example. For



such equations, the mesh refinement required for accurate solution of the
equations is an important consideration. We show mesh convergence begin-
ning at a mesh level having between 8 cells (at the problem initialization) to
25 cells (at the time used for mesh convergence) within the mixing zone.

1.2 A Two Pressure Two Fluid Flow Model

We are concerned with the dynamic growth of a thin mixing layer formed at
the interface between two fluids, and embedded in a larger flow field. Random
perturbations on the interface grow due to fluid instabilities and evolve into
a complex flow microstructure, to give rise to the mixing zone. We are here
concerned with acceleration driven mixing. The averaging process used to
define the model equations can be thought of as a local spatial or temporal
average, or as an ensemble average, with respect to an ensemble of random
initial conditions.

Within each realization the evolution of the interface is chaotic; at time ¢,
the same space point may be occupied by fluid 1 or fluid 2, depending upon
the position of the interface in that realization. Several realizations lead to
the consideration of a mixed zone of fluids where, on average, one finds fluid &
at a given point p only a fraction By = Gk (¢, p) of the ensemble total. Clearly,
Br = 1 corresponds to a pure fluid region, where there is no mixture at all,
a situation that happens away from the interface of all realizations of the
ensemble. Evidently,

Br+pB2=1.

We parameterize the fluids by the discrete index k, £ = 1,2, and let [,
Pk, Uk, Pr and e be the volume fraction, density, velocity, pressure and total
energy of fluid £, respectively. The model we study is defined by the system



of equations
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proposed in [3, 26, 27, 29, 6]. Here, g is the gravity and ¢*, p* and (p?)*
represent averages to be modeled by a closure expression,

U = piUh + pgvi (2)
P = phpa + phpr (3)
(p?)* = pipaty + (1 — pf — pg)p1t + pigp1?s - (4)

The coefficients p and pf can be proved quite generally to define convex
sums, so that u{+pud =1, ui > 0, ¢ = v, p [28]. These coefficients are assumed
to depend on the volume fraction 8 and ¢ only. Boundary conditions at the
edge of the mixing zone imply

q — Br —

:U'k:(t,ﬂk) - /Bk+dZ(t)ﬂk’ 3 q=v,Dp, (5)

where k' = 3—k is the complimentary index to k and the d’s satisfy d?di = 1.
Restricting the model to one spatial dimension z measuring height, let

z = Z(t) be the edge of the mixing zone where 3 vanishes. As a convention,
the pure fluid region for fluid 1 will be located above the pure fluid region for
fluid 2. Henceforth, we will assume that the mixing zone is expanding at both
edges, i.e., (—1)Z,(t) > 0, and set Vi = |Z,(t)|- In one spatial dimension,
the constitutive factor dj, was shown [33] to be a z-dependent ratio of volume
creation terms for the two multiphase species, independent of any closure

5



assumptions. As a condition of closure, we assume dj, is independent of z,
and obtain
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Refer to [24]. Here Dy/Dt = 0/0t + v,0/0z denotes the phase k convec-
tive derivative. The formula (6) defines the constitutive law as a function
of the solution variables. In the weakly compressible limit, a perturbative
analysis [33, 24] is applied to (6). This analysis supplies new information on
incompressible pressures, which appear in second order in the Mach number
in this expansion. From this analysis, we see [33] that underdetermination
of the incompressible pressure is resolved by information supplied from the
weakly compressible theory. The choice for the pressure closure

dﬁ = Pk'/ Pk (7)

HOES (6)

appears quite naturally.

The system (1) is missing one condition at each edge z = Zy(t) of the mix-
ing zone. Each missing condition is associated with a missing characteristic
at the Z, boundary. For the fluid with vanishing (i, the sonic characteristic
entering from the 3y = 0 si_gle is missing. This missing information is supplied
by the edge acceleration, Z(t).

Thus we regard the edge positions Z(t) as input, or data, which complete
the specification of the model, or close it. We appeal to the buoyancy drag
model (see [29] and references therein) to provide the Zj(¢). In this sense
we separate and almost totally decouple the complete multiphase model into
distinct edge and interior models, with the edge model completing the closure
of the entire model. Many authors do not decouple this analysis, and consider
logically linked edge and interior equations. To the authors, the separation of
these two distinct issues into two distinct models appears to be advantageous
or at least harmless. With the mixing zone edge accelerations given and
constitutive laws (6) and (7), the model has no adjustable parameters.

The mixing zone edge information will be supplied through a phenomeno-
logical buoyancy drag ODE to specify the edge accelerations,

LA Z (1) P! V2

1 — Ag— Ok 8
- dt? g pr+ e 174 ®)
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where the Atwood number A = £2=5L. Equations of the general form (8) are
known as buoyancy-drag equations, and have been considered by a number
of authors [31, 1, 7, 14, 38]. A systematic error [1, 14] has been the use of the
displacing fluid density pj in the numerator of the last term of (8). See [36] for
correct discussion of drag. This error was corrected in [7] and subsequently in
[38]. In the absence of this correction, a singular drag coefficient is required
for A = 1. Given (8) and the self similar solution 7, = (—1)Fa;Agt? for
steady acceleration (Rayleigh-Taylor) mixing, there is a unique, one to one

correspondence between Cy and ay. For example
]_/011 -2

Ci=—"—— 9

P21+ A) (9)
o 1

T+ 0 (14 A)]

(10)

so that with oy = 0.06, C; varies by a factor of 2 from C;(A = 0) = 9 to
Ci1(A = 1) = 4.5. We fit the available data on «;, which does not show a
significant trend in its dependence on A, and regard (9) as a definition of C;.
See Appendix A for the o data.

The buoyancy drag equations (8) used to specify the edge equations de-
pend parametrically on the Atwood number, and thus on the local density
field. For (nearly) incompressible flow, the Atwood number can be speci-
fied from ¢ = 0 data, and in this case the edge equations (buoyancy drag)
and interior equations (1) decouple. In the general (compressible) case, the
boundary Atwood number depends on the solution of the interior equations,
so that the coupling between the edge equations and the interior is weak but
nonzero.

The vertical length |Z;| in (8) is replaced in [38] with a horizontal length,
the wave length A. For this reason, the evaluation of a; in terms of C; in
[38] depends on an additional ratio: the bubble height to bubble width ratio
to convert a horizontal to a vertical length; whereas this ratio is not needed
in [7]. The treatment of [38] assumes that the drag coefficient C; = 27
is independent of the Atwood number leading to a calculated value of a4
varying from a; = 0.065 at A =0 to oy = 0.05 at A = 1. After adjustment
in [8] for the factor A\/|Zi| = 3, so that A\ appears in the denominator of
the decay term (8), C; in [7] varies by a factor of 2, from 3 for A = 0 to
1.5 for A = 1, assuming a; = 0.05. The experimental data shows no clear
trend in the A dependence of «y, so that a constant «; appears to be a



better interpretation of the experimental facts than is a constant C;. The
theoretically determined [8] value for A/|Z;| = 3 lies in the middle of the
experimental values, whereas the value \/|Z;| = 1.5 of [38] is outside the
experimental range. For this reason the drag coefficients from [7] and [38] do
not agree.

We now describe the specific configuration to feature in our analysis and
simulation. Suppose a slab of heavy fluid of density p, lies beneath a slab of
light fluid of density p; < ps, separated by an interface. This configuration
is then accelerated downwards with an acceleration larger than the earth
gravity, effectively reversing the direction of gravity. In the following, the
fluids occupy a container [0,1] x [—1, 1] with periodic boundary conditions
in the horizontal direction. We impose zero velocity conditions at the upper
boundary z = 1.0 and constant pressure conditions at the lower boundary z =
—1.0 for our incompressible calculations. For the compressible calculations,
we impose a rigid wall at the top, z = 1.0, and outflow boundary conditions
connecting to a fixed ambient state at z = —1.0.

2 The Numerical Algorithm

The algorithm presented in this section is the extension of the front tracking
algorithm [20, 21, 23, 22, 25, 30] to the two fluid mixture model (1). It is
developed for two spatial dimensions, but is tested here for one dimensional
flows only. Thus, the mixing zone edges Zx(t) needed to close the model can
be used without transverse spatial dependence.

Front tracking is a numerical method in which selected waves are explic-
itly represented in the discrete form of the solution. Examples include shock
waves, contact discontinuities, and material interfaces. Other waves, such
as leading and trailing edges of rarefaction waves, have continuous states
but jumps in their first derivatives. Tracked waves are propagated using
the appropriate equations of motion for the given model. For example, if
the system of equations consists of a set of hyperbolic conservation laws,
u; + V - f = h, then the instantaneous velocity s of a discontinuity surface
satisfies the Rankine-Hugoniot equations, s[u] = [f] - n. Here n is the unit
normal to the discontinuity surface. During a time step propagation, the
type of a wave, and the flow field in a neighborhood of the wave determine
a local time integrated velocity for each point on the wave in the direction
normal to the wave front. Wave propagation consists of moving each point a



distance sAt in the normal direction as well as computing the time updated
states at the new position. Tracking preserves the mathematical structure of
the discontinuous waves by maintaining the discrete jump at the wave front,
thus eliminating numerical diffusion. It also allows for the direct inclusion of
the appropriate flow equations for the wave front in the numerical solution.
The stencils used for the update of the interior states which are irregular
due to overlap with the front, are extended with ghost cells [25] to consist of
state values from only one side of the front.

A tracked wave, known as a front (or, in 2D, a curve), is a piecewise linear
representation of a physical wave, which is embedded in the underlying finite
difference rectangular grid. A curve (or front) is a set of piecewise linear
segments, called bonds. Each bond connects two points located at its two
ends. Stored with each point are two states to represent the discontinuity
across the wave. An orientation is given along the curve so that we may
speak of the left and right states at a point. Propagation of the front can
be defined as updating the position of each point on the front and updating
the corresponding left and right states associated to it at a new time ¢ +
At. Operator splitting, in the rotated tangential normal coordinate system
(T, N ), allows separate propagation steps in directions normal to and tangent
to the front. The tangential propagation is performed on each side of the front
followed by the normal propagation. Since the solution is smooth during the
tangential propagation, a convenient finite difference scheme, such as Lax-
Wendroff, can be used to update the states at each point on the front. Notice
that tangential propagation of points on the front is equivalent to remeshing
of the front, in the limit At — 0, so it is not essential to move these points
during the tangential update.

On the computational domain we find a fixed rectangular computational
grid, and an independently gridded lower dimensional front. This front is
comprised of the mixing zone edges. Its mesh size is of the order of magnitude
of the spacing in the rectangular grid. The complement of the front consists
of either single phase or two phase fluids. Fluid states are assumed to vary
smoothly within the closure of each component.

The data for the numerical solution consist of a (single or two phase) fluid
state attached to every gridblock center, representing the average fluid state
in the block and a (single or two phase) fluid state at each of the two sides
of the front at any front grid point. These data, together with the choice of
an interpolation method, determine the (single or two phase) fluid state at
any point in any component, and thus the numerical solution.



2.1 Propagation of Front Points

Point propagate is a basic front tracking operation; for the gas dynamical ver-
sion, see [10]. This operator computes the time-advanced position and state
of the front. The currently implemented algorithm uses local dimensional
splitting to decompose the equations of motion into components normal and
tangential to the interface. Let N , T be the normal and tangential unit vec-
tors at some point on the front. Then v} can be rewritten as @, = v N +U,{i
0¥ = v N + 0T and § = gvN + g7 T. The projection of the equations (1)
onto the normal direction can be written as

. OB
OB = _UNa—]Vk )
dprvp oy — %) 0
8t,0k+ g];\fk :_pk(kﬂk N)aljg\[k ’
0 op v — k) 08
D)+ o+ B =
_ (e —p") 9Bk

0 vy —v%) 0
O (prvg ) + aN(PkUk v ) = ka;‘cp( g A v) 8% ,

0 0 ’UN — vk 8/6
8t(pkek)+a—N(Pk€kvéV) o P Prvy) = pkek( k 5 v) aNk

+ ((pow)* + p vy — 2ppvy)) OB

Bk ON

+ pkUI]chN .
(11)

Figure 1a shows the basic stencil of states used to compute the contribution
to the normal component of flow. The states sly and sry denote the left and
right states at the point to be propagated. States sl; and sr; are interpolated
at distances An in the direction normal to the front. The projection of these
states onto the line normal to the front is used to compute the interface
velocity at the point and a pair of time updated left and right states at the
front.

The system (11) is hyperbolic, with eigenvalues \* = v}, )\f = v + ¢,
and X} = v}, corresponding respectively to characteristics C*, Ci¥, and C.
The A} eigenvalue has multiplicity two, arising in both the tangential velocity
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Figure 1: A schematic showing the stencil of states used in propagating a
front point. For simplicity the diagram is shown for two space dimensions.
The normal propagate stencil is shown in (a), while (b) shows the stencil

used in the tangential update.

and energy equations in (11). Here ¢, is a macroscopic sound speed. The

characteristic equations of the system (11) are

(dBk)c- =0,

(ERdBk — ckdp + dpr)co = 0,

(dvg)cg =0 )

(& dBx % prer(doy — gndt) + dpg)cx =0,

with

€= Wi, — prci(vi — vi)
Belvy —vy) 7

+ Wite(pe —p")

B Bl £ — k)’

Wi = (v — 1) [prer(vf — vi) + prvy — (pow)*] -
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Let Z7 be the bubble (vanishing light fluid) mixing zone edge position,
7% be the spike (vanishing heavy fluid) mixing zone edge position, (v]')?,,
(vY¥)3, be the normal velocities of fluid 1 and fluid 2 at the corresponding
positions Z* and Z% at time t". The edge position Z}™' at the next time

level "t is updated using
7MY = 70 4 (o) NeAL, k= 1,2,

where N; and N, are normal vectors at Z7 and Z3 respectively.

The heavy fluid is continuous across the bubble edge and the light fluid
is continuous across the spike edge. The continuous phase states on the front
are updated by interpolation from interior states after the interior update.
Here we describe the update of vanishing phase on the front by applying the
method of characteristics and the buoyancy-drag law.

First we update the normal component of the vanishing phase velocity
(vi )ox on the edge k by finite differencing (8) and noting that (vf)ox is same
as the edge normal velocity Z(t) = Vi(t):

R = e+ (0¥t { g — 0 | >3J (05 (v fich |

(p2)tx, + (o1 (Zk)"
n o - - n_ (p2)g—(p1)gy
where A7, is the instantaneous Atwood ratio at edge k, Aj, = (pz)g{ +(p1)§:.

For the tangential velocity update, we have
(W Jor = (vk Jok
due to Eq. (14).

Secondly, we use characteristic differencing to update the pressure at the
bubble edge (k = 1) by tracing back the C| characteristic from the space-
time position (27, t,41) to (2/,1,), with 2/ = Z"* — (v —¢))? AtN;. Note
z' is located inside the mixing zone. Let (U;)" be the phase 1 state at this
space-time position (2, t,), found by interpolation on the numerical solution
at time ¢,. Approximating (15) by finite differences, we have

(p0)oi™ = w1+ (60)'B1 + () {(0] )5 = (01")' = gAt} .

At the spike edge (kK = 2), we similarly obtain an approximation to (15)
by tracing back the Cy characteristic from (257, #,.1) to (2',t,) with 2/ =
Z3 — (v + c9)By At Ny:

(p2)5s" = b+ (65)'5 — (p2c2) {(v2)5y " — (v2)' — gAt} .
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Finally we approximate (13) and obtain (pg)5" by noting (8)5, = 0 for
all n:

(or)on " = (Pe)oe + (pk)gl%ck)gk(pk)gk '

Note that there is no equation for the vanishing phase associated with
the characteristic equations C;" and C; at the two edges, pointing out of the
mixing zone. These equations are replaced by the buoyancy drag equation
(8) at each edge, so that total number of equations is preserved.

2.2 Tangential Sweep

Once front points have been processed using the normal point propagate
operator, a second sweep is performed to incorporate tangential flow infor-
mation. This is accomplished by projecting the states on a tracked wave near
a point onto the tangent plane at the point being updated. As shown in Fig.
1 for two space dimensions, states sl; and sr; are evaluated by interpolating
points at distances As in arclength along the curve, each taken from its re-
spective side of the curve. The tangential projection of these states are then
used as data for a standard finite difference solver that provides the final
time updated state at the front point. The equations during the tangential
sweep are given by

b = ~vigr
Oprof _  (vf —v}) OB
6th + T = kaa—T ’
9 op v, — vr) 0B
(i) + g (pevi ) + g = el = i) ﬂk : T
P =P ) 9Pk ’

0 vy —v3)0
gt + ol o) = —puoy D

0 0 vl — )0
Oc(prer) + aT( kekvk) aT( kvk) pkek(kﬂik’r)a—gf
L ((por)" + poy — 2pivy) O
Br oT

+ prvp 97 -
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The above equations are the projection of the system (1) onto the tangential
direction T of the front.

2.3 Interior Update

Our approach to update the states in the interior region is to use the dimen-
sional splitting method by decomposing the equations of motion into z and
y components, and then to apply standard finite difference methods in each
directional component. For example, our current implementation includes
the Lax-Wendroff method [37, 40] and the MUSCL scheme [11, 2] in the z
and y direction.

The convergence of the splitting method is given by Crandall and Ma-
jda [12]. Strang [42] pointed out that the accuracy of splitting methods is
second order if the order in which the one-dimensional problems is solved is
alternated, as in xyyxzy---.

To couple the front information to the interior states, we consider the
irregular finite difference stencils, which overlap, or cross the tracked front.
In updating such mesh blocks, we treat the tracked front as an internal time
dependent “boundary”. Missing stencil points on the “wrong” side of the
interface are filled in by extrapolation as a ghost cell [25], using data from
the same side of the interface as the mesh block being updated. The ghost cell
method was introduced by Glimm, Marchesin and McBryan in 1980 for this
purpose. Therefore the front divides the domain into several subdomains. We
solve the problem inside each subdomain with front states (from the correct
front side) as boundary conditions. In that way, our finite differencing is
never performed across the front, and the flow gradient remains perfectly
sharp at the front.

3 Incompressible Solutions

In this section we present an analytic solution for the incompressible pressure
equations in the one dimensional case, which we use for the validation study
in §4. This solution, of independent interest, completes the incompressible
solution discussed in [6]. We also present an integral constraint on the in-
compressible pressures first derived in [33], which insure their equality to the
second term in the expansion of the compressible pressures in the incom-
pressible limit. We emphasize the remarkable fact that the incompressible
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pressures, in the absence of a compressible limiting flow, are not unique.
They are uniquely specified by certain details of the compressible flows from
which they are derived as a limit.

3.1 Closed Form Incompressible Pressures

The solutions for the incompressible pressures described in this section de-
pend on earlier analytic solutions for the volume fractions and the veloci-
ties [6, 28]. These solutions for §; and v, are based on the observation that
when the history of the mixing zone edges Zi(t) are known a priori, then
the interface and continuity equations decouple from the momentum equa-
tions. This closed form solution for f; and vy is summarized in the following
theorem.

Theorem 1 Consider incompressible flows in a finite but large interval D
satisfying the closure models (2) and (5). Assume the boundary condition
that the light velocity vanishes at the upper boundary of D. Suppose that both
edges Zy(t) are known and satisfy Vi = (=1)¥Z, > 0. Suppose that By is
piecewise C' and initial profile Bx(z,0) is an invertible function of height z,
and that vy, is continuous across the mizxing zone edge Zy. Then the interface
and continuity equations in (1) have a unique solution for By and vy. The
velocity is given as a function of By by

. . Vi
vk = Zpp Bk, t) = B Zi, Vk , (20)

where V.= Vi + B2Va. The constitutive law d in the model (5) is given by

du(t) = “//’;((:)) : (21)

The volume fraction By is given by the functional inverse of

(s t) = 20(Be) + / o (Ber s) ds | (22)

where 2o(Bg) is the inverse of the initial volume fraction profile By (z,0).

Still under the assumptions of Theorem 1, we now describe analytic so-
lutions for the pressures using f; and ¢ as the independent variables. We
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rewrite the momentum equation in (1) as

8pk
0z

kD" —pkaﬂl hk( )

+(=1)" 5. 0z

(23)

where

) = (9- k) (24)

For any quantity ¢, set

=01+ 5o, (=q—doge, Ag=q1—qo.

The linear combinations p and p decouple the momentum equations into a
pair of ordinary differential equations.

op _ 7 op
0z 0z
This system can be integrated in closed form in terms of the history of the
edge motions.
We begin by writing hj explicitly as a function of 3 and 7, and its
derivatives. With (20) one can verify that

B _7. (25)

(%k K V;CZV]C/ (%k 8vk k
— =(=1 =(=1)"—=% , — = (= — s .
8ﬁk ) —2 ’ aVk ( ) VQ ﬂk ’ aVkl ( ) V2 ’Bk ’Bk

-
(26)

The hy terms in (25) contain convective derivatives that can be written in
terms of Vj, and (. Let

ov Ovg, Bir = .
ck()mmg()z%w ;mW@—%Wm.(m
Then ) 9 9 v, OB
Vg k Vk k! Ve = Vg k
[ = ]_ Z ] _—
g = Vgydit GV gmde + g2
_ C 6U}C (ﬂk’l)k)
0B, 0z

- v v\ OB
= (G — 95, ( ﬂkaﬂk>

16



Substituting this result into h; and using (26), we obtain

8vk( IB 81)]9)%_ %%)

FJeA “o8, 0z 0B, 02
0 0

= pr9 — PCk + PrBx (a;k) %

_ Vi Vi 0B
= g — PCk + PkBr 7 oz

hy = prg — PkC/mLPk(

Therefore, the right side of (25) is given explicitly as a function of j,

o V2V2
h = Pg+ 172 (810 Vi = B3p2Vs) aﬂl
(p1 —P2)ﬂ‘1/ﬂ2 (Z2V251 Zlngﬂz) )
" VZV ﬂl (28)
h = pg+ (Bip1VE + BopedhVy) ——

0z
1 B} B}
?(0152 + dypa ) (22‘/1251 — Z1V22/82> .

Observe that p = 0 if d5 = p;/p2, so that in this case h is independent of g.
The system (25) may be integrated with respect to z since fy is a function
of z. Instead, we rewrite the system in terms of 3; since 3, is expressed as an
invertible function of z. We now transform these integrals into [3; integrals.
We differentiate v* = pyv, + p¥vy with respect to §x using (20) to obtain

= (29)

This result is inserted into the derivative of (22) with respect to (. If we
assume an infinitesimally thin initial mixing zone, then the term z(8;) =
dzy/dB in (22) vanishes and we obtain

% _ ey [(RONEG),
55 =D 2/0 L (30)

This identity reduces the integrals in z to integrals in (.
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3.1.1 Weakly Self Similar Solutions

Incompressible solutions that correspond to edge position functions of the
form Zy(t) = (—=1)kay, Z(t) are called weakly self-similar. Define V (t) = Z(t).
The weak self similar hypothesis allows evaluation of (30) as

2 92 t 2 2

g—;k = (-)¥2Lg2 (/0 V(s)ds) = (-D)¥2t2z() (D)
assuming Z(0) = 0. As a result, the integral of (25) can be written as
an integral with respect to ;. The integrand is a rational function of g
with a denominator which is a power of a linear function of [, times a
polynomial in the instantaneous scale factor Z(t) and its first and second
derivatives. These integrals can be evaluated explicitly by a partial fraction
decomposition, leading to the weakly self-similar pressure solutions

B(B,t) = p2(Z0) + BrgZ(t) Ay + BLV2() By + B1Ap V() Z(1)Co
2
Ay = S5 (paai+pas)

B, = 1 [82Ap o2 — 3 al
0= 373 18P 0y Baprc0|
3
Co = % (=201 (@ + Qs + a3) + 3a(oq + o) (a2 + @) — 6’|

p(B1,t) = p(Zy) + BugpZ(t) Doy + ﬂ1V2(t)E0 + 51V(t)Z(t)F0 )
2
D() = %(az -+ E) 5

2

Ey = 65(;1& [—20 002 + @ + &%) + 3apa?(az + @)]
3
Fy = 36(;720[ [2p0(a3 + cwa + @) — 3asap(as + @)

(32)

We recognize the Ay and D, terms as buoyancy terms as they are mul-
tiplied by gravity. Similarly, the By and E, terms, both proportional to V2
are drag terms, while the Cy and Fj, terms, proportional to Z, are inertial
terms. The constitutive law closure (7) implies p = 0, so that the buoyancy
contribution to p vanishes.
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3.1.2 The General Incompressible Pressure Solution

In the general the identity (31) is not valid. Since the history integrals
originating in (30) cannot be evaluated in closed form, they appear in the
final expression for the pressures. We reverse the order of integration between
By and t. For fixed time s in the history integral, the (3; integrals are again
evaluated in closed form by a partial fraction decomposition.

The analytic solutions for p and p are found by integrating these expres-
sions. We concentrate on the solution for p. Integrating the first equation of
(28), we have

P(2) = Bip1(2) + Bop2(2) =D(Z1) + /z hdz

Z

/ﬁ1 pP1P1 + patho
0 T73(s)

P VE() 43 — paVE (1)

SvEvie) [ s % 44, (33)

+ 20y — p1) / V2 (s)V2(s)

=p2(Z1) + 29 /Ot VE(s)Vs (s) d¢1] ds

X

A . .
/o V:;Lg(t) (Z1V22(t)¢2 - Z2V12(t)¢1) d¢1] ds.

Note that all accelerations Z = Z(t) are functions of time ¢ and that
¢1 + ¢o = 1. Analytic solutions can be obtained since the denominator
involves only powers of V(s) and V (t), which are linear functions of 3;. We
omit details concerning the integrations and partial fraction decompositions.
All identities were found with the assistance of the computer algebra program

Maple.
It is simple to check that
B1
p1P1 + P22 1 B 7 -
g d¢1 = - ———5—(p2V(s) + pVa(s)) . (34)
/o V'(s) 2V3(s)V"(s)

19



Similarly for the second term, the integration with respect to [, is performed.

B1
/0 741(15) (P V()7 — po Vi (t)$3)dpr =
1 B

ATa] (B2 Ap V() — 3B2p2Va(t)V (1)) -

(35)

The partial fraction decomposition for the last integrand in (33) gives rise
to four different rational functions. We factor out the terms involving Zj.
Let n = Va(t)Vi(s) = Vi(t)Va(s)-

N bds (5o - ~
/0 m <Z1V2 (t)pa — Z2V; (t)qbl) doy =

- %(Vf(t)z + V(1))

((wwvl(s) L Vi(0)Va(s) In (

"
- OV 2+ VW) 2 (vl(wvz(t) In (

_ BV (Va(s) +V(s) | Sun(Va(t)ViE(s) — Vl(t)V'QQ(s))) '
Wi (s)V () AV (s) Va(s)V (s)AV (s)

When these expressions are substituted into (33) we obtain

¥4

p(2) = p2(Z1) +/ hdz = py(Z1) + frgA + 51V2(t)B +2ApC ,  (37)

where
a= ;Eziwmswﬁw(s))ds,
B = WOV gon 0 _36,0,1,07() |
3V(t)
C = /0 % (V) Zu(t) + VE(t) Za(t)) X
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2Wa(s) V" (5) AV (s) Va(s)V (s)AV (s)

A similar analysis for p (details omitted) leads to:

BV Va(s) +V(s) | Bn(Va(®)VP(s) - va(t)v;<s>>) ]ds'

B(e) = B(Z) + / hde = §(Z)) + BugiD + BE +2F ,  (38)

,'74
( DAV tm(s)) Bur’ {W(tmvw)_ﬁ/(s)(vxs)_ +V(s>>}>
V(s)Va(t))  Va(s)V(s) " 2Wa(s)V (s)
(v1(>22(t>+v2(> (1)) x
Va(s) VAV  pV()AV(s)
( T oo { ROVEH T BEVE })
: : V(t)Va(s)
+ (Vl(s)ZQ(t) +V2(s)Z1(t)) PV (OVi(O)Va()AV (¢) In (V(S)VQ@> ds .

Again we recognize A and D as buoyancy terms, B and F as drag and
C and F as inertial terms. The parallelism of structure between the A, and
A etc. terms is evident. The buoyancy term f;gpD vanishes due to (7).
Observe that the p and p drag terms are instantaneous, i.e. have no history
integral, while the buoyancy and inertial terms require history integrals.
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3.2 Unique Solvability of the Pressure Equation

The system (25) requires two independent boundary conditions. Assuming
continuity of the pure to mixed fluid pressures, we have p(Z;) = p2(Z) and
P(Z2) = p1(Z2). However, these two values are are not independent, as they
are related by the identity

Zs Zs

P2) =07+ [ (B + paba)dz = p(20) + [ F.
A 1
and so an additional condition is needed. This new relation is obtained by
taking the incompressible limit of the compressible equations. The physical
meaning of the incompressible pressure is quite different from that of the
compressible case. Assume that the two compressible fluids are described by
polytropic equations of state,

Pe = A2 Appit . (39)

The entropy of fluid & is given by Ag, = A2A4,. The incompressible limit is
obtained as A — oo. In this section, we assume isentropic flow, so that the
Ay, are constant.

By [33], the state variables and constitutive parameters admit an expan-
sion of the form

Br =0 +001),

v = v + O\,

pr =P+ 0N, (40)
Pe = NPy + 07 + O\,

dy = dp° + X7y + A2 1 04

where the superscript oo indicates the incompressible solution and the expo-
nent (4,s), j = 1,2, indicates the jth order term for the slow variables in the
expansion. Here \2a} = ci (o) = N2Apyepe ™" is the leading order term
for the sound speed squared in fluid .

Note the quadratic leading order term in powers of A in the pressure.
This term equals the pressure defined by the equation of state for fluid k,
evaluated at p°. Thus, p) = Ax(p®)". Continuity of the compressible

pressures at the interface requires A\2A4;(p$°)" = A\?A,(p3°)” and therefore,

(po)™

A, —
27 (o)

A (41)
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For incompressible flow, Theorem 1 gives the closure relation (21). Asymp-
totic analysis for slightly compressible flows shows that the relation (6) pro-
vides the equations

1,s ) 1,s ) 1,s
1 V1 ‘/1002 I
Zo aUQ 1 DQpQ (255)
— + — dz
v(2,5) N A 0z P2 Dt
dy () = | =5
% iDlpl dz
z, 0z  p1 Dt
v(1,s 1,s woo 1/ (2,8 2,s
V) ey oy )
V*loo
1 2T a0 dv>® [ Op>® On>®
- L / 51:21 (pl +vf°p1>dz
Vi Viss piay ot 0z
ZOO
2 B =1 (opy opy’
5° d
* smoo PSPaS ot " s ‘

for the constitutive law d} through second order in the Mach number. Here
V) = 1 209@1)), 299 = ZU)(¢) is the j-th order term in the expansion
of the compressible mixing zone edge Zj, and z = 27 (z = 27*°) is defined
as the position of the upper (lower) wall of D. Specifically, Eq. (43) resolves
a degree of freedom in the incompressible pressures related to the relative
compressibility of the two fluids. The incompressible pressures are uniquely
determined by the limiting sound speeds a;, of the two phases and the volume
creation constitutive law d? in the weakly compressible (2,s) limit. These
relations and the convergence of the compressible multiphase solution to the
incompressible solutions are studied in [33].

4 Simulation Studies

Our numerical studies aim to validate the algorithm described in §2 and
explore the relationship between the model for edge motion (8) and our
multiphase model inside the mixing zone. Both experiments are performed
near the incompressible limit and therefore depend on the analysis of the
compressible equations in the incompressible limit [33] and on the analytic
solutions for this limit, both of which are summarized in §3.
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We begin by reviewing the initialization of our model for acceleration
driven fluid mixing. The two important parameters controlling the initial-
ization used in §4.1 and §4.2 are the compressibility A, see (39) and (40),
and the drag coefficients Cy in (8). The other parameters are adjusted to
produce an initialization for the compressible code with few transients near
the incompressible limit A — oo.

The initialization proceeds as follows. For some dimensionless set of
units, assume that the height z of the container is parameterized by the
interval [—1,1]. Suppose that the heavy fluid of density p3° = 0.4 is lo-
cated below the light fluid of density pf® = 0.1 and that the container is
given an upwards acceleration of g = 0.3. The Atwood number is therefore
A= (p —p°)/(p° + p) = 0.6. Each fluid is given a y-law as an EOS with
71 = 1.4 and v, = 1.8 for respectively the light and heavy fluid.

According to self-similar edge motions of the incompressible flow,

Z = (=1)F oy Agt? (44)

there remains only one parameter, the mixing growth rate a4, for the edges.
According to formulas (9) and (10), the growth rates oy are equivalent to the
drag coefficients Cy. When A < 0.9, the hypothesis of a stationary center
of mass [29] for the mixing zone is approximately valid [7]. This hypothesis
implies an additional constraint, which determines the ratio

ay 3008 =)+ \/é(pg" = p°)? +4pp3 5)
o 2p5°

of the mixing growth rates oy as an exact identity [6] for incompressible
flow. At the bubble edge, experimental results [43, 39, 13, 15, 16] indicate
that a; ~ 0.06, and by (45), ay is fixed at ap = 0.093693.

In order to have a reasonable number of grid points initially within th
mixing zone, we set Zy(ty) = 0.1 and begin the experiment at the time

Zs(to)
OfQAg ’

t():

after the beginning of the expansion of the mixing zone. This value ¢, is
then used with (45) to obtain the initial position of Z(¢p) and the velocities
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Zi(to), k=1,2:

Z1(to) = —0.06403882,
Zi(t) = v1(Za(to), t0) = —Va(to) = —0.05259731, (46)
Zg(to) ’UQ(ZQ(t()), to) = VvQ(t()) = (0.08213348.

The initial state for compressible multiphase flow (3¢ (0), px(0), vk (0), px(0))
is defined as

I

Be(0) = B2 (to)
vk (0) = v®(fo)
47
pu(0) = (1) 4
pr(0) = N’pj, +p°(to)
according to (40).
4.1 Model Dependence on Edge Motions
The equation
d*Z(t) O(p1 — p)
(=1)*ps dtkg =(pe—p1)g+ # (48)

9p,

0
- Pk'VkQE — (=) (d} — 1) (p1 — p2) by

0z
has been derived [28] as an exact consequence of the momentum equation
for incompressible flow. Here the RHS of this equation is evaluated along
the trajectory z = Z(t). Newton’s law (48) of acceleration relates the phe-
nomenological drag coefficient and added mass in (8) to the pressure dif-
ference and the gradient of the pressure difference. These latter quantities,
determined in closed form for incompressible flow in (37)-(38), thus allow a
derivation of (8) with a theoretical determination of added mass and drag.
The interpretation of the separate terms in (37)-(38) is discussed in §3.1.
The structure of these terms is complicated, and a simple interpretation of
the connection between (48), (8) and (37)-(38) is outside the scope of the
present work. However, we make a few qualitative observations, based on
the numerical solution of the chunk mix multiphase equations (1).

In (48) the acceleration term is positive for both £ = 1 and k£ = 2. The
gravity term (py — p1)g is positive and thus increases acceleration, while the
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Figure 2: The insensitivity of the volume fraction and scaled velocity to the
drag coefficients Cy and the resulting mixing zone edges Z, when A\? = 25 and
t = 3.0. These variables, when plotted vs. a scaled height (z —Z1)/(Zy— Z1),
are nearly indistinguishable for a considerable variation in the Z;. Here Cj
is the incompressible drag coefficient.

0.9

Figure 3: Insensitivity of the mean pressure p to variation of the drag coetf-
ficients and the resulting edge motions Z;. Here p is plotted vs. z and the
other parameters are as in Fig. 2.
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Figure 4: The sensitivity of the pressure difference for the compressible equa-
tions to the drag coefficients and resulting mixing zone edges Z; when \? = 25
and t = 3.0. We plot (p1 — p2)/(Zy — Z1) vs. (z — Z1)/(Zy — Z1) for sev-
eral choices of drag coefficients C;, and corresponding growth rate coefficients
ap = O (Ck)

1

(~ZIZZ,) (-Z)NZ;Z,)

Figure 5: The pressure difference depends on time. Displayed are the pressure
difference curves for ¢ = 0.0, 0.5, 1.0, 2.0, 3.0. Left: )2 = 25 (nearly
incompressible), Right: A\ =5 (moderately compressible).
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drag term proportional to —V;2, being negative, always decelerates. Assum-
ing di = py/px, the coefficient —(—1)*(df, — 1)031/0z of the pressure differ-
ence is always nonpositive. Since p; —ps is positive in Figs. 4 and 5, this term
in (48) is a deceleration term for the fluid parameters considered here. The
pressure difference gradient, generally negative for the edge motions shown
here, is also a deceleration term.

From the above analysis, we can understand the dependence of the mul-
tiphase solution on the edge motions Zx(t). The Z; are determined through
specification of the drag coefficient C}. Since the dependence of the C} on
compressibility is not understood, we explore the dependence of the solution
on the C. The influence of a variation in Cj on the multiphase solutions can
most easily understood through its influence on oy via (10). We plot normal-
ized variables with this direct effect removed. Fig. 2 (left) indicates that the
quantity O plotted in terms of a normalized height variable, is insensitive to
changes in the mixing growth rates oy (determined by the drag coefficient
C(t)). The edge velocity scaling (linear growth in time) is complicated due
to an initial time offset in the amount %, and by the use of an incompressible
initialization for the compressible dynamical evolution. Thus we introduce
the scaling velocity

Vi(t) = 200 Agto + 204, Agt = (—1)*Vi(t) (49)

where af = a;(C}) and oy (Cy) are defined by (10) and ¢ > 0. From Fig. 2
(right), we see that vy/Vy is insensitive to the choice of compressible drag
coefficients. In fact the small remaining dependence on the compressible
drag coefficients in Fig. 2 (right) is due to the fact that Vi(t)/Vk(t) is not
exactly equal to (—1)*. See the left edge of Fig 2 (right) where v (Z;,)/ Vi =
Vi/Ve = (=1)k. A plot of vy/Vi vs. z/(Zy — Z1) (not shown) displays
no visible dependence on the drag coefficient. Similarly, p, plotted vs. z
in Fig. 3, is insensitive. The variation in the drag coefficient considered
here corresponds to 30% and 70% increments in the edge motions (and a’s),
relative to the incompressible edge motions determined by the incompressible
drag coefficients C}.

However, in Fig. 4, the scaled pressure difference and its gradient, espe-
cially at the spike edge of the mixing zone, are seen to be sensitive to the
drag coefficients and thus to the edge motions they determine. As the edges
move faster (i.e. as the drag coefficient is decreased), the pressure difference
at the spike edge responds with an increase in (p; —p2)/(Z2 — Z1) (increased

28



deceleration) and in V(p; — p2) (decreased deceleration). Thus we see that
the modification in the acceleration is accommodated by a change in the bal-
ance between the contribution of these two forces. Surprisingly, this balance
is sensitive to a change in either the bubble or the spike drag coefficient.
Between these two terms at the bubble edge, the gradient term appears to
be more significant at the spike edge. At the bubble edge, the gradient of the
pressure difference is nearly zero, and the pressure difference induced drag
results mainly from the pressure difference term. This term scales directly
with the change in edge positions. Thus we see little competition between
the two terms, and the one term which plays an active role varies in direct
proportion to the effect causing this change. The present discussion applies
only to the Atwood number (A = 0.6) considered here, and does not fully
explore the role of these two pressure difference terms in fixing the value for
the phenomenological drag coefficient.

Initialization transients occur in the balance between the two pressure
difference terms. After the transients have died out, the pressure difference
resembles its incompressible value qualitatively, and this late time pressure
difference approaches the analytically determined value in the incompress-
ible limit. See Fig. 5. In the nearly incompressible left frame, about 50
sound wave crossing have occured, and initialization transients are small for
the time final time shown, ¢ = 3.0. In the more compressible right frame,
only about 10 sound speed crossings have occured. Thus there has been
less time for the transients to decay in the right frame. Moreover, the in-
compressible initialization used here will generate larger transients in the
more compressible right frame. For single phase Euler equations, it has been
proved by the uniform analysis that a more compressible system is more os-
cillatory in early time and that the oscillatory waves decay after a certain
small time [34, 35, 32]. This fact is not guaranteed for the multiphase flow
equations. The complete analysis of oscillatory part of solutions for the mul-
tiphase flow equations has not been reported yet. In Fig. 5 the t = 0.5 and
t = 1.0 curves of the scaled pressure difference involve initialization transients
rather than oscillatory waves.

We recall that the nonuniqueness of the incompressible solution [28] is
required to accommodate distinct incompressible limits for the pressure dif-
ference. Specifically the incompressible pressure difference depends on the
ratios of compressible sound speeds (compressibilities) and compressible cor-
rections to the edge motion Z(¢). The latter depend on the compressibilities,
the hydrostatic temperature stratification, and compressibility corrections to
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the buoyancy drag equation (such as a dependence of the drag on the com-
pressibility). For this reason, we believe the explicit dependence on the edge
motions will turn out to be a strength, not a weakness of the multiphase
equations (1), in allowing the full range of solutions physically achievable.

4.2 Validation

We validate our code via convergence under mesh refinement and convergence
of the compressible solutions to the incompressible limit given in §3 as A —
0.

4.2.1 Convergence to the Incompressible Limit

The incompressible limit of the single phase compressible Euler equations has
been studied theoretically in higher space dimensions [18, 34, 35]. The multi-
phase flow case, in contrast, presents additional difficulties, so that even one
dimensional multiphase flow is nontrivial. We rely here on the one dimen-
sional multiphase flow analysis with a uniformly valid asymptotic expansion
obtained previously [33]. The difference p; — p, between the pressures of the
two fluids is the most sensitive of the primitive variables in the equations, as
we see when studying convergence in the incompressible limit.

The incompressible limit is difficult to achieve numerically within a com-
pressible computational framework due to the short time steps (large sound
speed) and possible oscillatory behavior which are characteristic of compress-
ible simulations. As shown in [33] the solutions generally decompose into a
slow expansion part with a slow time scale and an oscillatory part with a
fast time scale. The oscillatory component is evidence of rapid equilibration,
which complicates the numerical convergence to the incompressible limit.
Our use of the incompressible limit solution for initialization reduces the fast
time scale oscillations. While fast variable oscillations are of interest, we have
largely eliminated them from simulations presented in this paper.

In studying the limit A — oo, we set Cy, = C) for \* = 100, C, =
0.7CP for \? = 25, C = 0.5CY for \* = 10 and C; = 0.3C} for \? =
5. Figs. 6 and 7 display convergence of the volume fraction (; and the
scaled velocities vx/Vy to the incompressible limit as A — oo, for \? =
100, 25, 10, 5. Again use of a scaled velocity vi/Vy would accelerate the
convergence. We plot the curves p; — py and p{® — p3° for ¢t = 3.0 in Fig. 8§,
for A2 = 100, 25, 10, 5. This figure establishes the convergence of the
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Figure 6: Convergence of the volume fraction of light fluid to the analytical
incompressible solution at £ = 3.0 as A — oo.

pressure difference to the incompressible solution as A — co. Note that the
A2 = 100 curve has crossed over the A = oo curve in this limit. Due to
the ill-conditioned nature of the incompressible limit when computed with a
compressible code (as has been observed in some calculations not reported
here), we do not believe the A = 100 calculation in Fig. 4 has sufficient
accuracy to attach significance to this cross over. As shown in Fig. 4, the
pressure difference is sensitive to the growth rates of compressible mixing
zone, while Figs. 2 and 3 show that the volume fraction, velocities and mean
pressure are insensitive. In particular, the pressure difference at the spike
edge, even after scaling by (Z, — Z;), depends on the bubble and spike
growth rates.

4.2.2 Convergence under Mesh Refinement

We conduct the simulations for A2 = 100 with grid sizes of 100, 200, 500 and
1000. The physical parameters are the same as those described in §4.1. We
set C, = C}.

At time ¢t = 2 the mixing zone comprises 1/4 of the computational do-
main, so that the coarsest Az = 1/50 mesh, for example, has 25 cells within
the mixing zone. Fig. 9 shows the convergence of the pressure difference
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Figure 7: Convergence of the scaled velocities to the analytical incompressible

solution as A — oo. Here ¢t = 3.0. Left: light (upper) fluid, Right: heavy

(lower) fluid.

Figure 8: Convergence of the pressure difference within the mixing zone to
the analytical incompressible solution as A — oo. Here ¢ = 3.0.
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Figure 9: The convergence of the pressure difference within the mixing zone
under mesh refinement. Here A2 = 100 and ¢ = 2.0.

within the mixing zone under mesh refinement. The convergence of two fluid
velocities under mesh refinement is demonstrated in Fig. 10. Since the plots
of volume fraction and density are almost indistinguishable for different grid
sizes, we omit them here. For the coarsest grid level shown here, the number
of grid cells within the mixing zone increases from 8 to 25 over the coarse of
the simulation. Note that the volume fraction, velocities and mean pressure
converge much more rapidly than does the pressure difference.
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Figure 10: The convergence of the fluid velocities under mesh refinement.
Here A2 = 100 and ¢ = 2.0. Left frame: light (upper) fluid. Right frame:
heavy (lower) fluid.

5 Conclusion

We have presented a numerical algorithm for the solution of the chunk mix
multiphase flow equations (1) coupled to a phenomenological law (8) for the
motion of the edges of the mixing layer. This algorithm extends the front
tracking algorithm and deals with issues unique to the front tracking model
for this multiphase model. A new analytic solution for the incompressible
pressures has been described, thereby completing previous analytic solutions.
The numerical algorithm has been validated by comparison to the analytic in-
compressible limit and by convergence under mesh refinement. The sensitive
dependence of the pressure difference on the compressible drag coefficients
Cr and thus on the edge motions or the mixing coefficients o = ax(Cy)
has been explained in terms of the relation of the exact momentum equation
evaluated at the mixing zone edge to the phenomenological buoyancy drag
equation. We demonstrate insensitivity of the rest of the solution to these
quantities.
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Appendix A The Bubble Growth Rate oy

Mixing rates for acceleration driven flows have been characterized by ex-
periments, theories and simulation studies. Read and Youngs [39, 43] have
published the result that the bubble acceleration rate a; is almost a con-
stant, with a1 ~ 0.063 — 0.077 in 3-D experiments. The experiments have
been repeated by various authors and similar values of «; have been ob-
tained; we mention the experiments of Dimonte and Schneider [13, 15, 16]
giving a; = 0.05+ 0.01. The theoretically determined mixing rates [8, 4, 38|
are obtained from a bubble merger model. They are in agreement with
experiment. Three-dimensional simulations [5, 19] of the Rayleigh-Taylor in-
stability, carried to later time, give a growth rate a; ~ 0.07 — 0.08. Only
the untracked (TVD) simulations [19] are in significant disagreement; care-
ful analysis points to numerical diffusion at the contact as the cause of this
discrepancy [19]. See Table 1.

Merger Cheng et al. [8, 4] o ~ 0.05 —0.06
Models Oron et al. [38] a; ~ 0.05
Experiment Read/Youngs [39, 43| a1 ~ 0.063 — 0.077

Dimonte/Schneider [13, 15, 16] a; = 0.05+0.01

Cheng et. al/George et al. [5, 19] | a; ~ 0.07 — 0.08 (tracked)

Simulation a1 ~ 0.035 (untracked)
Youngs [45] a; ~ 0.04 —0.05
Youngs [46] a; ~ 0.03

Table 1: Values of a; determined from theory, experi-
ment and simulation.
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