Simulation of 3D fluid jets with application to the Muon Collider target design
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Abstract 

The FronTier code was developed to model the propagation of three dimensional fluid jets. FronTier is based on the method of front tracking, a numerical technique for solving systems of conservation laws in which the evolution of discontinuities is determined through the solution of the associated Riemann problem. The code was used for the numerical simulation of the Muon Collider target. The target is in the form of a mercury jet interacting with high energy proton beams in the presence of a strong magnetic field. The numerical simulation of the target evolution driven by strong pressure waves is important for the optimal target design. Theoretical estimations of the target behavior in the magnetic field, based on the linear stability analysis, are also presented. In addition, the response of the mercury target interacting with the pulsed proton beam was studied using the ANSYS general purpose code for the thermal and pressure wave propagation.

1 Introduction

In order to understand the most basic structure of matter and energy, an advance in the energy frontier of particle accelerators is required. Advances in high energy particle physics have been, and are expected to continue to be, dependent  on and paced by advances in accelerator facilities. The majority of  contemporary high-energy physics experiments utilize colliders. A study group was organized at Brookhaven National Laboratory to explore the feasibility of a high energy, high luminosity muon-muon collider.  Such a collider has numerous potential advantages over traditional electron-positron machines (linear colliders), however, several challenging  technological problems remain to be solved.  One of the most important is to create an effective target able to generate the high-flux muon beam. The need of operating high atomic number material targets in particle accelerators that will be able to withstand the intense thermal shock has led to the exploration of free liquid jets as potential target candidates for the proposed Muon Collider [12]. The target will be designed as a pulsed jet of mercury (high Z-liquid) interacting in a strong magnetic field with a high energy proton beam.  A global numerical study and an analytical estimation of the behavior of the mercury jet under such energy deposition is the main goal of the present research.

       The numerical simulation was performed using the computer code FronTier, developed to model the propagation of three dimensional fluid jets. FronTier is based on front tracking, a numerical method for solving systems of conservation laws in which the evolution of discontinuities is determined through solutions of the associated Riemann problems. For the thermal deposition and pressure wave propagation analysis ANSYS, a general purpose code, was also used.

      The paper is organized as follows. In Section 2 we describe some details of the Muon Collider target design and present analytical estimates of the behavior of the mercury jet in the magnetic field based on linear stability analysis of the magnetohydrodynamical system of equations. Section 3 is devoted to the description of the main ideas of the method of front tracking and their realization in the FronTier code. We present results of the numerical simulation of the target behavior obtained using the FronTier code in Section 4.  In this section, we also present some numerical results of the thermal analysis of the target and the pressure wave calculations obtained by using the ANSYS code. Finally, we conclude in Section 5 with a discussion of the consequences of the work in this paper and possible directions for future research.
2 Muon Collider target

2.1 Design parameters

The Muon Collider target is shown schematically in Figure 1. It will contain a series of mercury jet pulses of about 1 cm in radius and 30 cm in length. Each pulse will be shot at a velocity of 10-15 m/s into a 20 Tesla magnetic field at a small angle 
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 to the axis of the magnetic field.  When the jet reaches the center of the magnet it is hit with two 2 ns proton pulses, 150 ns apart; each proton pulse will deposit about 40 kJ of energy in the mercury.  The value and spatial distribution of the energy deposition was estimated based on the interaction of a beam of 
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Figure 1. Muon Collider target

      The main goal of the present paper is to estimate the state of the target after the interaction with the proton pulses. In particular, the main issues are the distortion of the jet due to eddy currents as it propagates into the magnetic field, the deformation of the jet surface due to strong pressure waves caused by the proton pulses, the possibility of the jet to break up into droplets and the pressure field evolution.

2.2 Linear stability analysis 

Analytical estimation of the mercury jet behavior during its propagation in the magnetic field provide important data about the state of the jet before the interaction with the proton beam. 

      Classical linear stability analysis [2,13,14,15] of the inviscid hydrodynamical system of equations leads to the following conclusions:

i)  The jet is stable for all non-axisymmetric deformations;

ii) The jet is stable for axisymmetric deformations with wavelengths exceeding the circumference of the jet;

iii) The wave number of the most unstable wave is  k=0.697/R, where R is the radius of the jet, for which the coefficient of the exponential wave growth is
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, where T is the surface tension and 
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is the density of the liquid. The characteristic time for the mercury jet breakup is about  0.5 sec which is much greater than the propagation time of the target in real experiments. 

      For the study of the magnetohydrodynamic stability of the jet we shall follow the analysis presented in [2].  The equations of megnetohydrodynamics applicable to the jet stability analysis are
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where 
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 is the resistivity,  
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is magnetic permeability, 
[image: image17.wmf]s

is the conductivity, 
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is the total stress-tensor and 
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includes the external forces of non-magnetic origin. Then the linearized system of magnetohydroynamic equations for an inviscid fluid of finite electrical conductivity is 
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where 
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are the pressure and magnetic field perturbations, respectively. Conditions at the jet boundary are: 

i) The radial component of the velocity field on the boundary is compatible with the form of the boundary, which we assume to be harmonically perturbed:
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ii) The normal component of 
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is continuous across the boundary;

iii) The normal component of the total stress tensor is continuous across the boundary.

     From these assumptions the following expression defining the growth rate of the perturbation waves on the jet surface can be obtained
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where
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and 
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are the Bessel functions of order n of the first and second kind, respectively.

      Asymptotic analysis of equation (3) for different limiting values of the resistivity makes it possible to conclude:

i) In the limit of infinite resistivity the magnetic field has no effect on the capillary instability of liquid jets; 

ii) In the limit of zero resistivity the magnetic field tends to stabilize the jet, in particular, a field strength of 100 Gauss will stabilize the jet for the varicose deformations of all wavelengths;

iii) In the limit of high but finite resistivity (the case of mercury) the stabilizing effect of the magnetic field is diminished.  For a mercury jet with radius R=1cm a magnetic field strength of order 
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 will be necessary to stabilize the jet against the varicose deformations of all wavelengths.

3 Method of front tracking 

The FronTier code was developed to model the propagation of three dimensional fluid jets. The FronTier code is based on front tracking [3,5,6], a numerical method which allows the computation of dynamically evolving interfaces. In general, interfaces can model many types of discontinuities in a medium such as shock waves in gas dynamics, boundaries between fluid-gas states, different fluids or their different phases in fluid dynamics, component boundaries in solid dynamics etc. The unifying feature of the models solvable by the method of front tracking is the possibility to represent the governing system of equations in the form of conservation laws and to determine the evolution of the discontinuity through the solution of the Riemann problems [3,11]. This method often doesn't require highly refined grids and it has no numerical diffusion.  

       Front tracking represents interfaces as lower dimensional meshes moving through a volume filling grid. The traditional volume filling finite difference grid supports smooth solutions located in the region between interfaces and the lower dimensional grid or interface defines the location of the discontinuity and the jump in the solution variables across it. The dynamics of the interface comes from the mathematical theory of Riemann solutions, which is an idealized solution of a single jump discontinuity for a conservation law. Where surfaces intersect in lower dimensional objects (curves in three dimensions), the dynamics is defined by a theory of higher dimensional Riemann problems such as the theory of shock polars in gas dynamics. Nonlocal correlations to these idealized Riemann solutions provide the coupling between the values on these two grid systems.
      The computation of a dynamically evolving interface requires the ability to detect and resolve changes in the topology of the moving front. A valid interface is one where each surface and curve is connected, surfaces only intersect along curves and curves only intersect at points. We say that such an interface is untangled. Two independent numerical algorithms, grid-based tracking and grid-free tracking, were developed [5-7] to resolve the untangling problem for the moving interface. The advantages and deficiencies of the two methods are complementary and an improved algorithm combining them into a single hybrid method was implemented in the FronTier code and described in [7]. Our numerical results presented in the next section were obtained by using this hybrid method of front tracking. 

3 Results of numerical simulation

3.1  Evolution of the target

In this Section, we present the results of the Muon Collider target simulation by FronTier.  The initial jet, prior to interaction with the first proton pulse, was obtained by the FronTier code in a natural way using physical assumptions derived  from the design of the jet gun. In particular, it was assumed that mercury comes from the nozzle with a prescribed velocity of 10 m/s, the outside pressure is 1 atm, the pressure inside the jet differs by the value 
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, where T is the surface tension and R is the radius of the jet and the temperature of the ambient gas is equal to the temperature inside the jet.  The state of the ambient gas was modelled by the polytropic gas equation of state with 
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while the liquid state was modeled by the stiffened polytropic equation of state with  the stiffening coefficient 
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[1,11]. Since the viscous length scale for the problem is negligibly small and the viscous force can play a significant role only near the pinch-off point of the jet, the viscosity effect was neglected. Thus the characteristic length scale for the problem is the jet diameter. The propagation of the jet boundary was determined through the Riemann solution to the compressible inviscid fluid system of equations. 

      The state of the jet before the interaction with the first proton pulse is shown in Figure 1a. We observe that the jet surface does not exhibit any significant surface instabilities, in agreement with the linear stability analysis predictions. The interaction of the jet with the proton pulses was modeled by adding external energy to the interior  energy at points located near the axis of the jet at one specific moment of time. This is a reasonable approximation since the energy deposition time interval will be only 2 ns in real experiments.  The energy deposition was transformed within the code to a pressure perturbation by the equation of state. Figures 2b and 2c depict the evolution of the jet surface instabilities after the interaction with the first and second proton pulses, respectively. Notice that the time scale of the numerical experiments was increased to microseconds since the jet surface didn’t exhibit any essential changes within  150 ns. In order to study the influence of the single proton pulse the time interval between pulses was extended to 
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a) State of the jet before interaction         b) State of the jet after interaction with

    with the first proton pulse, t=0              the first proton pulse, 
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                            c) State of the jet after interaction with

                                     the second proton pulse, 
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Figure 2. Evolution of the mercury jet

3.2 Heat Generation and Diffusion

In order to address the question of thermal relaxation in the mercury target between pulses, a transient heat diffusion analysis was performed using the ANSYS code. Specifically, two beam pulses separated in time by 150 ns were implemented assuming that thermalization due to the energy deposition occurs instantaneously. The ionization energy, the latent heat and the radiation heat loss were neglected. Figure 3 depicts the temperature distribution at the end of the first pulse. The temperatures experienced by most of the jet exceed those of mercury vaporization. There exists an outer shell layer, however, with temperatures still below the vaporization temperature at the end of the first pulse. The heat diffusion analysis that followed the end of the first pulse showed that the thermal relaxation during the 150ns is insignificant. The deposition of heat by the second beam pulse will result in temperatures in the core of the target in excess of 2000 K. For a more realistic thermal analysis the heat diffusion, ionization energy and latent heat need to be implemented in the model along with better representation of mercury properties as functions of temperature.

[image: image38.jpg]



Figure 3. Temperature distribution in the target at the end of the 

            first proton pulse (only one half of the jet is shown)

3.3 Generation and propagation of pressure waves

The pressure distribution calculated according to the energy deposition profile was implemented in the model as a non-equilibrium initial condition and the solution to the corresponding acoustic wave equation was obtained numerically by using the ANSYS code.  The goal of this simulation was to observe the propagation of the pressure waves due to pressure gradients present in the initial conditions and to establish a time frame in which pockets of negative pressure start to appear in the wake of the wave front as well as a result of wave reflection at the jet surfaces. 

      The first frame of Figure 4 depicts the initial pressure at a cross section of the jet. The first simulation performed within the 150ns interval representing the distance between two proton beam pulses demonstrated that this time scale is negligibly small for any essential advance of the pressure front. In order to observe the dynamics of the process, the time scale of the simulation was increased to several microseconds. The various frames of Figure 4 depict the pressure profile within the jet as the front moves both axially and radially and reflects at the boundaries. Some domains of negative pressure were observed at later times (Figure 4d).
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Figure 4. Pressure waves caused by downward-projected proton  beam.

4 Conclusions

The FronTier code was developed to model the propagation of three dimensional fluid jets and applied to the numerical simulation of the Muon Collider target. The state of the mercury jet  before its interaction with the first proton pulse obtained by the FronTier code is in a good agreement with the prediction of the classical linear stability analysis.  The linear stability analysis of the magnetohydrodynamical set of equations demonstrate the stabilizing effect of the magnetic field of the mercury jet. 

      The results of the numerical simulation demonstrate the evolution of the surface instabilities of the mercury jet due to the proton pulse energy deposition. The analysis however shows that the time interval between the two proton pulses is not large enough for the development of any significant surface instabilities. Therefore, as required for normal muon production, the mercury jet will not immediately break into droplets following the energy deposition process. Similar predictions were obtained in [8]. However the observed surface instabilities will probably lead to the jet break-up at later time when the jet is leaving the magnetic field.  

      Numerical simulation of the thermal and pressure wave propagation obtained using the ANSYS code confirmed the conclusion of the previous analysis about the time scale of the problem. These results, however, show that the temperature in the center of the jet reaches values above the boiling point of mercury. Therefore, an improved analysis of the target behavior is required, for which the FronTier code must be further developed to accommodate a liquid-vapor mercury phase transition and a modified equation of state for mercury near the critical point.  This will be the main effort of our future research. 
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