
1

Molecular Dynamics Algorithms 
and Performance on QCDOC 

Peter Rissland and Bin Fang
Department of Applied Mathematics



2

Outline

Introduction
Molecular Dynamics
QCDOC
MDoC

Structure
Function Decomposition
Ewald Method
All Gather
Performance and Benchmarking

FFT and P3ME
Conclusions



3

Molecular Dynamics
Newton’s Equations

i i iF m x=
F V= −∇

1( )( )i ix m V−= −∇
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Molecular Dynamics
Potential Function
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Parallel Computers
Simulations involve thousand to millions of 
particles
Simulations need to last into the nanoseconds 
with a time step resolution of femptoseconds
Prevents sequential computers from running 
large systems for a long simulation time.
Need supercomputers
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Parallel Computers
QCDOC ASIC

1 Gflop FPU
4 MB fast L2 cache
500 MHz PPC 440
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Parallel Computers
There are two ASICS per daughter board
32 Daughter boards are assembled to form a mother 
board 
Sets up as a 6 dimensional torus, 3 dimensions 
closed on a motherboard, 3 are open to off board 
communication 
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MDoC
Molecular Dynamics on Chip
Designed specifically for QCDOC and BG/L
Adaptable communication scheme
Built using C++

Natural Modularity
Easily adaptable for low level functions 
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MDoC Program Structure
Particle Decomposition

Each processor gets N/P 
particles
Perfect load balance

Spatial Decomposition
Each particle placed in a 
“bin” of size rc

Interaction with itself and 26 
surrounding bins
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MDoC Program Structure
Periodic boundary 
conditions
Simulation cell replicated 
in all directions

Interactions of ⊕ with 
particles in neighboring 
simulation cells

Replicate “bins” at sides of 
cell to adjacent side
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MDoC Functional Description
Uses AMBER force field
AMBER sets up parameters for bonded and 
non-bonded potential equations
Well tested and highly used force field for 
protein simulations



12

Functional Description
Implemented Energy Equations
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Functional Description

Real space of the Ewald and the VDW term is 
only computed for 
|rij|=|ri – rj|<|rc|

Distances are only computed for particles in 
the same bin or neighboring bins.

K-space in Ewald sum is truncated to  
|k|<|Kmax|
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Forces are computed
Then equations of motion are integrated over 
using the velocity Verlet method. 

MDoC Function Description
( )F U R= −∇
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Ewald Method
Effective for handling long-range electrostatic 
effects
Must have periodic boundaries
Total Charge must be neutral  

Scales O(N3/2) assuming O(N1/2)  k-space 
vectors
Scales better than O(N logN) methods on 
large machines!

0iq =∑
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Ewald Method
Force calculation

2 2

2

2

*
| |

2
10

4
2

0 1 10

3
0

( ) ( )

( )1 2
4 | |

2 sin( ) cos( ) cos( ) sin( )

21 ( )
4

ij

i c

N
ij r n ij

i j
n j ijij

j i

k N N
i

i j j i j j
j j

i j i
ij

ij

F R U R

erfc r n r n
q q e

r nr n

q e r q r r q r
V k

q q r
erf r

r

α

α

α α
πε π

ε

α
α

πε

− +

=
≠

−

> = =

= −∇ =

⎧ ⎫+ +⎪ ⎪= +⎨ ⎬ ++⎪ ⎪⎩ ⎭

⎧ ⎫
+ +⎨ ⎬

⎩ ⎭

− −

∑∑

∑ ∑ ∑
k

k k k k ki i i i

2 2*
| |ij

M
r nj

i j

e α

π
− +

≤

⎧ ⎫
⎨ ⎬
⎩ ⎭

∑



17

K_space(ri)

Save position if it’s 
needed for Ebonded

Calculate fij
For interacting particle, j

on this processor 
VDW and Ewald r space 

MDoC Force Algorithm
For each 

Particle i on 
this processor

K_space(ri)

All_gather()

Calculate fji, for
interacting particle, j

on this processor
VDW and Ewald r space

For each 
Particle i
received

Global sum on K-
space vectors 

Compute K-
Space force

K_space(ri)

Pre-compute

For each k-space 
vector assigned to 
this processor 
compute 
sin( ) and cos( )i ir rk ki i

sin( )
cos( ) sin ( )...

i

i i

hu r
hu r m v r
i
i i
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MDoC All gather
All gather on Beowulf and BG/L

Use the MPI functionality MPI_Allgather
QCDOC

No current MPI implementation
Custom build all gather algorithm with low level 
SCU communication.
Nearest neighbor communication only!
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MDoC All gather 
Basic Idea

Create an isomorphic spanning tree first rooted at 
processor 0, which is a subset of the 6D network, 
then translate for each processor
Do a breadth first search down the tree, 
broadcasting the message to all children in the 
tree.
Tree structure cannot be stored in memory.
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MDoC All gather
Goals

Balance load on wires
Minimize the number of message transfers
Use shortest path distance for message passing
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MDoC All gather
Notation and Definitions

Torus K = (k1,k2,…,k6)= (2, 2, 2, M, M, M)  M>2
Nodes are labeled in radix ki format (positive 
integer coordinates)
Neighbors of node S differ in 1 dimension by 1.

6 5 4 3 2 1( , , , , , )S s s s s s s= * *
6 1( , ... , ... )iS s s s=is connected to nodes

* ( ) mod , { 1,  1} [1, 6]i i is s j k j i= + ∈ − ∀ ∈for
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MDoC All gather
Notation and Definitions

Translation operation:
Translation of node v with respect to node s

Centered Torus
S is node in radix ki format, t = C(s) is node in 
centered notation, 
where and

Ts (v) = (v + s) mod K 

6 5 1( ) ( ( ), ( )... ( ))C S c s c s c s= ( )
2

i
i i

kc s s −
⎢ ⎥= ⎢ ⎥⎣ ⎦
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MDoC All gather
Growing spanning tree from node 0

All nodes use centered torus notation
Define the parent function. The parent of node 
S in the tree rooted at node 0 is defined by:

The parent of node S, rooted at node R is 
defined as TR(P(S))

*
6 1( ) ( ,... ,... )iV P S s s s= = * 1  if 0

1  if 0
i i

i
i i

s ss s s
⎧⎪ + <= ⎨ − >⎪⎩

where

We select si
* as the { | |, 0}min i i

i
s s ≠
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MDoC All gather

Sample Spanning tree for 5x2 torus
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(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(0,0)

Torus in radix ki
format

Torus in centered
notation

Spanning tree 
for node 0
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MDoC All gather
Algorithm:

Each processor contains a list of buffers to be sent to 
each neighbor.

1. Initialize neighbor lists with the message from this 
processor.

2. Send neighbor lists deleting all messages 
3. For each message received, determine all the children 

of this processor in the tree rooted at the node where 
the message originated from.

4. Store the message in the neighbor list for that child
5. If we are done processing data from the furthest nodes 

in the torus then terminate, otherwise go to step 2.
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MDoC All gather
Memory Utilization

The memory used is the total number of messages stored 
at one instance of the loop 
We want to measure the number of nodes at distance r in 
the torus.

1 2 3 4 5 6
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MDoC All gather
Derive the generating function G(X) in which 
the coefficient, Gr, of Xr is the number of 
nodes at distance r from the origin.
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MDoC All gather
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MDoC All gather
Total storage required is B*max{Gr}, B is the size of 
message.

4,70416,1764,00020
3,8081546,65618
2,97613,1432,76816
2,2721221,95214
1,63210,1113,82412
1,1209800010
675840968
358617286
1264,55124
203642

max{Gr}Distance, r, with 
largest number of nodes

Number 
of Nodes

K
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MDoC All gather
Spanning tree gives us minimum path from the root 
node to all nodes on the network
Use all the “wires” connecting adjacent nodes at 
least once per step.
Wires connecting smaller dimensions of size 2 have 
one message sent per step, larger dimensions have 
Gr – 3 message split between them.
Total number of message transmissions for one 
message is (P – 1) – (# of leaves in the trees)
= 8M – 1 – 4M = 4M – 1 = .5P – 1 
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MDoC Results
Used beta-hairpin as 
a base line for 
comparison

240 Protein Atoms
3339 H2O
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MDoC Performance

58.4452.33564

15.4868.81216

8.47916.0958

4.8328.2194

268.2412
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Future Work
Add to functionality 

NVT and NPT ensemble, 
constant pH
MTS

Increase scalability
N/P is “small”
N < P
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Conclusions for MDoC:
MDoC is the ONLY molecular dynamics 
package capable of running on QCDOC and 
BG/L.
We believe it is capable of running large 
simulation into the microseconds on large 
number of processors.
Near perfect utilization of the network for all 
gather

matrix-multiplication
Solutions to linear systems
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Action at a distance formulations
F F F ext

i ij i
j i≠

= +∑

A familiar example is Coulomb’s law, giving the electrostatic force between 
two charged particles as

3
0

( x x )
F

4 | x x |
i j i j

ij
i j

q q
πε

−
=

−

ext
i ij i

j i

ψ
≠

Ψ = + Ψ∑

0

1
4 | x x |

i j
ij

i j

q q
ψ

πε
=

−

The potential energy of particle i, 

Where, for point charges



36

The timestep loop updates these values using the forces of interaction and 
equations of motion to obtain the state of the system at a slightly later time:

1.Compute forces
clear force accumulators
for i=1 to Np do

The Particle-particle method

{x ( ), v ( ); 1, }i i pt t i N=

F : 0i =

The state of the physical system at some time t is described by the set 
of particle positions and velocities

Accumulate forces
For i=0 to Np-1 do
For j=i+1 to Np do

Find force Fij of particle j on particle i

F : F F

F : F F
i i ij

j j ij

= +

= −
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2. Integrate equations of motion
for i=1 to Np do

Fv : v

x : x v

new old i
i i

i
new old
i i i

D T
m

D T

= +

= +

3. Update time counter
t:=t+DT
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Operation count

10Np*Np-Nptotal
6NpUpdate v and x

10Np(Np-1)20
6Update       and 
3Compute 
8Compute  
3Compute 

Do for Np(Np-1)/2 
particle pairs

3NpClear force accumulator
Operations countCalculation

x xi j−
3|x x |i j−

Fij
Fi Fj
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Typically, a few thousand timesteps are needed to 
obtain useful results from a computer experiment, so 
the direct summation PP method is viable only for 
systems of up to approximately a thousand particles 
if forces are long ranged.
e.g. stellar clusters

We can do more particles if the forces are short 
range.
e.g. the Lennard-Jones model of atomic liquids 
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Force at a point formulations

F= − ∇Ψ

Forces and potentials may equally be regarded as fields

ii x=xF F(x)|= ix=x(x) |iΨ = Ψ

2
0/φ ρ ε∇ = −

The potential field is related to the source distribution by the field equation,
e.g. for point charges, we got Poisson’s equation:

Where
x=x| ,   

ii iqφ φΨ = Is the electrostatic potential and       is charge densityρ
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The Particle-mesh method
PM method exploits the force-at-a-point 
formulation and a field equation for the 
potential.
The result is a much faster, but generally less 
accurate, force calculation than is obtained 
using the PP method
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The timestep loop of the PM method differs from 
that of the PP method only in the calculation of the 
forces.
The PM force calculation corresponding to the 
charged-particle PP example given above consists of 
three steps:

1. assign charge to mesh
2.Solve Poisson’s equation on the mesh
3.Compute forces from the mesh-defined potential 
and interpolate forces at particle positions.
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Operations count
operations count = ( )pN Nα β+

Where       and        depend on the particular form of PM scheme being used α β

We will take some characteristic values in order to make a comparison with 
PP method:

20α =
3 3

2( ) 5 log  for an ( ) meshN N N N N Nβ = × ×

e.g. taking N=32, Np=10^5, and a machine with a nominal CPU 
time per 
Floating point operation of 1us, we obtain

CPU time=(20*10^5+5*32^3*15)*10^-6 seconds
=4.5 seconds
~1day for the PP method
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The disadvantage of the PM method
Loss of resolution in the potential and force 
fields
only those field variations which have 
wavelength longer than the spacing of the 
mesh can be accurately represented by mesh 
values.

PM method only can handle smoothly varying 
forces.
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P3M method
P3M method combines the advantages of the PP and PM 
methods and enables large correlated systems with long-
range forces to be simulated.

The trick used in the P3M method is to split the 
interparticle forces into two parts

F F Fsr m
ij ij ij= +

Where the rapidly varying short range part       is nonzero for only a 
few interparticle distances and the slowly varying part        is sufficiently 
smooth to be accurately represented on a mesh.

Fsr
ij

Fm
ij

Operations count
operations count= ( )p n pN N N Nα β γ+ +
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Start
Position {x(nDT)}

Momenta {P((n-1/2)DT)}

Updata step counter
n:=n+1

PM force calculation

-assign charge to mesh

-solve for potentials

-interpolate forces

-increment momenta

PP force calculation
-fill head of chain and linked list 

tables

-updata momenta

Equations of motion 
-updata positions

-apply particle boundary 
conditions

-update energy accumulators

End
Positions {x(nDT)}

Momenta {P((n-1/2)DT)}
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Parallel FFT algorithm
The overview of the The overview of the twiddletwiddle--factor methodfactor method (four steps (four steps 
method):method):

From the view of parallel algorithm, the only step From the view of parallel algorithm, the only step 
that needs data transferring is step 3. All the others can that needs data transferring is step 3. All the others can 
be accomplished in each of the processes.be accomplished in each of the processes.

11212

2112

212121

22121

*).1:0 , 1:0(

nnnnn

T
nnnn

nnnnn

nnnnn

Fxx
xx

xnnFx
Fxx

××

××

××

××

←
←

−−←
← 1st Multi-row FFT

Twiddle factor 
multiplication

Matrix transposition

2nd Multi-row FFT
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x30
x31

x22
x23

x14
x15

x6
x7

x28
x29

x20
x21

x12
x13

x4
x5

x26
x27

x18
x19

x10
x11

x2
x3

x24
x25

x16
x17

x8
x9

x0
x1

e.g.
Suppose we want to solve                 , where                .       is the Fourier 
Transform matrix.  The method includes: 

1. multirow-FFT 

xFy 32← 32 and Cxy ∈ 32F

44848 Fxx ×× ←

4F•
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2. Twiddle factor multiplication: 

).3:0,7:0(*.4848 nFxx ×× ←

3. Matrix transposition
Txx 4884 ×× =

4. Multirow FFT 88484 Fxx ×× =

x30 x31x28 x29x26 x27x24 x25

x22 x23x20 x21x18 x19x16 x17

x14 x15x12 x13x10 x11x8   x9

x6  x7x4  x5x2  x3x0   x1

8F•



50

FFT on QCDOC

1 node 
(1*1*1)

4 nodes 
(4*1*1)

8 nodes 
(8*1*1)

16 nodes 
(4*4*1)

32 nodes 
(8*4*1)

64 nodes 
(4*4*4)

128 
nodes 
(8*4*4)

256 
nodes 
(8*8*4)

512 
nodes 
(8*8*8)

1024 
nodes 
(16*8*8)

2048 
nodes 
(16*16*8)

4096 
nodes 
(16*16*16)

128^3 0.246 0.2219 0.1377 0.0956 0.0546 0.034 0.0188 0.0103 0.0057 0.0034 0.0021 0.0013
256^3 2.208 1.8346 1.1311 0.7794 0.4432 0.2751 0.151 0.0823 0.0446 0.0258 0.0147 0.0084
512^3 19.58 15.1565 9.2884 6.3543 3.6048 2.23 1.222 0.6645 0.3591 0.2064 0.1167 0.0652

FFT BG/L

1 node 
(1*1*1)

4 nodes 
(2*2*1)

8 nodes 
(2*2*2)

16 nodes 
(4*2*2)

32 nodes 
(4*4*2)

64 nodes 
(4*4*4)

128 
nodes 
(8*4*4)

256 
nodes 
(8*8*4)

512 
nodes 
(8*8*8)

1024 
nodes 
(16*8*8)

2048 
nodes 
(16*16*8)

4096 
nodes 
(16*16*16)

128^3 0.075 0.1227 0.0873 0.0502 0.0283 0.0158 0.0096 0.0056 0.0033 0.0021 0.0013 0.0008
256^3 0.6857 1.0026 0.7091 0.4065 0.2293 0.1276 0.0768 0.0449 0.0258 0.0162 0.0098 0.0058
512^3 6.1714 8.1922 5.7585 3.2948 1.8552 1.0315 0.6197 0.3618 0.2069 0.1295 0.0778 0.0455

ratio

1 node 
(1*1*1)

4 nodes 
(2*2*1)

8 nodes 
(2*2*2)

16 nodes 
(4*2*2)

32 nodes 
(4*4*2)

64 nodes 
(4*4*4)

128 
nodes 
(8*4*4)

256 
nodes 
(8*8*4)

512 
nodes 
(8*8*8)

1024 
nodes 
(16*8*8)

2048 
nodes 
(16*16*8)

4096 
nodes 
(16*16*16)

128^3 30.49% 55.30% 63.40% 52.51% 51.83% 46.47% 51.06% 54.37% 57.89% 61.76% 61.90% 61.54%
256^3 31.06% 54.65% 62.69% 52.16% 51.74% 46.38% 50.86% 54.56% 57.85% 62.79% 66.67% 69.05%
512^3 31.52% 54.05% 62.00% 51.85% 51.46% 46.26% 50.71% 54.45% 57.62% 62.74% 66.67% 69.79%
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4.1Bindwidth
(sec/bit)Tw

7.723usPer hop time 
(sec/time)Th

2.8
Computational 

capability 
(sec/multiply-
add operation)

Tc

Hardware speed 
ratio 

(BGL/QCDOC)
Blue Gene/LQCDOC

Data analysis

1
500M

1
2 700M×

3us

1.67
500M

1
1.76 700M×
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1 node 
(1*1*1)

4 nodes 
(4*1*1)

8 nodes 
(8*1*1)

16 nodes 
(4*4*1)

64 nodes 
(4*4*4)

128^3 2.913/1.7 0.955/0.48 0.503/0.23 0.3/0.2 0.075/0.06

256^3 9.71/6 5.01/2.8 2.7/1.8 0.578/0.65

512^3 26.8/## /5.5

The left table 
represents
the running time 
of FFT on
QCDOC and 
BG/L

From the table and the
chart we can see that 
the ratio of running times
on two system is within 2.0.
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Future work
Implement the whole P3ME method on 
QCDOC.
Try to implement on BG/L and Nankai star


