
1

Molecular Dynamics Algorithms
and Performance on QCDOC

Peter Rissland and Bin Fang
Department of Applied Mathematics

2

Outline

Introduction
Molecular Dynamics
QCDOC
MDoC

Structure
Function Decomposition
Ewald Method
All Gather
Performance and Benchmarking

FFT and P3ME
Conclusions

3

Molecular Dynamics
Newton’s Equations

i i iF m x=
F V= −∇

1()()i ix m V−= −∇

4

Molecular Dynamics
Potential Function

() bonded nonbondedV R E E= +

0 0

1.2 1.4

() () (1 cos())bonded b

pairs angles pairs

E K b b K K nθ φθ θ φ= − + − + +∑ ∑ ∑

12 6()ik ik i k
nonbond

ik ik iknonbonded nonbonded
pairs pairs

A C q qE
r r Dr

= − +∑ ∑

θb φ

rij

5

Parallel Computers
Simulations involve thousand to millions of
particles
Simulations need to last into the nanoseconds
with a time step resolution of femptoseconds
Prevents sequential computers from running
large systems for a long simulation time.
Need supercomputers

6

Parallel Computers
QCDOC ASIC

1 Gflop FPU
4 MB fast L2 cache
500 MHz PPC 440

7

Parallel Computers
There are two ASICS per daughter board
32 Daughter boards are assembled to form a mother
board
Sets up as a 6 dimensional torus, 3 dimensions
closed on a motherboard, 3 are open to off board
communication

8

MDoC
Molecular Dynamics on Chip
Designed specifically for QCDOC and BG/L
Adaptable communication scheme
Built using C++

Natural Modularity
Easily adaptable for low level functions

9

MDoC Program Structure
Particle Decomposition

Each processor gets N/P
particles
Perfect load balance

Spatial Decomposition
Each particle placed in a
“bin” of size rc

Interaction with itself and 26
surrounding bins

2 4 6 8 10
2

4
6

8
10

X

Y

rc

10

MDoC Program Structure
Periodic boundary
conditions
Simulation cell replicated
in all directions

Interactions of ⊕ with
particles in neighboring
simulation cells

Replicate “bins” at sides of
cell to adjacent side

11

MDoC Functional Description
Uses AMBER force field
AMBER sets up parameters for bonded and
non-bonded potential equations
Well tested and highly used force field for
protein simulations

12

Functional Description
Implemented Energy Equations

2 2
0 0 12 6

, not excl

() () () (1 cos()) () ()ij ijbond angle dihed
i i i i i i i C

Bonds Angles Dihed i j i ij ij
i j

A B
U R k r r k k n U R

r r
θ θ φ δ

≠

= − + − + + − + − +∑ ∑ ∑ ∑ ∑

2

2

* *

1 10

R e a l S p a c e

2 2

4
2

0 1 10

R e c ip r o c a l S p a c e

0

()1()
4

1 1 c o s () s i n ()

(1
4

N N
i j

C i j
n i j i i j

k N N

i i i i
i i

i
i j i j

e r f c r n
U R q q

r n

e q r q r
V k

e r f r
q q

α

α
π ε

ε

ααδ
π ε π

= = +

−

> = =

+
=

+

⎧ ⎫⎪ ⎪+ +⎨ ⎬
⎪ ⎪⎩ ⎭

− +

∑ ∑ ∑

∑ ∑ ∑
k

k ki i

*

1
1

P o i n t S e l f E n e r g y a n d E x c lu s i o n E n e r g y

)
i j

N M
j

i i j i jr δ−
= ≤

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑

13

Functional Description

Real space of the Ewald and the VDW term is
only computed for
|rij|=|ri – rj|<|rc|

Distances are only computed for particles in
the same bin or neighboring bins.

K-space in Ewald sum is truncated to
|k|<|Kmax|

14

Forces are computed
Then equations of motion are integrated over
using the velocity Verlet method.

MDoC Function Description
()F U R= −∇

0 0 0 0

3

3

(0) , (0) , (0) ()
(.5) ()() () () ()

() (())
(.5)() () (() ()) ()

R R V V F F F R
t F tR t t R t tV t O t
m

F t t F R t t
tV t t V t F t F t t O t

m

= = = =

∆
+ ∆ = + ∆ + + ∆

+ ∆ = + ∆
∆

+ ∆ = + + + ∆ + ∆

15

Ewald Method
Effective for handling long-range electrostatic
effects
Must have periodic boundaries
Total Charge must be neutral

Scales O(N3/2) assuming O(N1/2) k-space
vectors
Scales better than O(N logN) methods on
large machines!

0iq =∑

16

Ewald Method
Force calculation

2 2

2

2

*
| |

2
10

4
2

0 1 10

3
0

() ()

()1 2
4 | |

2 sin() cos() cos() sin()

21 ()
4

ij

i c

N
ij r n ij

i j
n j ijij

j i

k N N
i

i j j i j j
j j

i j i
ij

ij

F R U R

erfc r n r n
q q e

r nr n

q e r q r r q r
V k

q q r
erf r

r

α

α

α α
πε π

ε

α
α

πε

− +

=
≠

−

> = =

= −∇ =

⎧ ⎫+ +⎪ ⎪= +⎨ ⎬ ++⎪ ⎪⎩ ⎭

⎧ ⎫
+ +⎨ ⎬

⎩ ⎭

− −

∑∑

∑ ∑ ∑
k

k k k k ki i i i

2 2*
| |ij

M
r nj

i j

e α

π
− +

≤

⎧ ⎫
⎨ ⎬
⎩ ⎭

∑

17

K_space(ri)

Save position if it’s
needed for Ebonded

Calculate fij
For interacting particle, j

on this processor
VDW and Ewald r space

MDoC Force Algorithm
For each

Particle i on
this processor

K_space(ri)

All_gather()

Calculate fji, for
interacting particle, j

on this processor
VDW and Ewald r space

For each
Particle i
received

Global sum on K-
space vectors

Compute K-
Space force

K_space(ri)

Pre-compute

For each k-space
vector assigned to
this processor
compute
sin() and cos()i ir rk ki i

sin()
cos() sin ()...

i

i i

hu r
hu r m v r
i
i i

18

MDoC All gather
All gather on Beowulf and BG/L

Use the MPI functionality MPI_Allgather
QCDOC

No current MPI implementation
Custom build all gather algorithm with low level
SCU communication.
Nearest neighbor communication only!

19

MDoC All gather
Basic Idea

Create an isomorphic spanning tree first rooted at
processor 0, which is a subset of the 6D network,
then translate for each processor
Do a breadth first search down the tree,
broadcasting the message to all children in the
tree.
Tree structure cannot be stored in memory.

20

MDoC All gather
Goals

Balance load on wires
Minimize the number of message transfers
Use shortest path distance for message passing

21

MDoC All gather
Notation and Definitions

Torus K = (k1,k2,…,k6)= (2, 2, 2, M, M, M) M>2
Nodes are labeled in radix ki format (positive
integer coordinates)
Neighbors of node S differ in 1 dimension by 1.

6 5 4 3 2 1(, , , , ,)S s s s s s s= * *
6 1(, ... , ...)iS s s s=is connected to nodes

* () mod , { 1, 1} [1, 6]i i is s j k j i= + ∈ − ∀ ∈for

22

MDoC All gather
Notation and Definitions

Translation operation:
Translation of node v with respect to node s

Centered Torus
S is node in radix ki format, t = C(s) is node in
centered notation,
where and

Ts (v) = (v + s) mod K

6 5 1() ((), ()... ())C S c s c s c s= ()
2

i
i i

kc s s −
⎢ ⎥= ⎢ ⎥⎣ ⎦

23

MDoC All gather
Growing spanning tree from node 0

All nodes use centered torus notation
Define the parent function. The parent of node
S in the tree rooted at node 0 is defined by:

The parent of node S, rooted at node R is
defined as TR(P(S))

*
6 1() (,... ,...)iV P S s s s= = * 1 if 0

1 if 0
i i

i
i i

s ss s s
⎧⎪ + <= ⎨ − >⎪⎩

where

We select si
* as the { | |, 0}min i i

i
s s ≠

24

MDoC All gather

Sample Spanning tree for 5x2 torus

(-1,2)

(-1,0)

(-1,1)

(0,-2)

(0,-1)

(0,0)

(0,1)

(0,2)

(-1,-2)

(-1,-1)

(1,3)

(1,2)

(1,1)

(1,0)

(1,4)

(0,2)

(0,1)

(0,0)

(0,4)

(0,3)(4,0)

(1,0)

(2,0)

(3,0)

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

(0,0)

Torus in radix ki
format

Torus in centered
notation

Spanning tree
for node 0

25

MDoC All gather
Algorithm:

Each processor contains a list of buffers to be sent to
each neighbor.

1. Initialize neighbor lists with the message from this
processor.

2. Send neighbor lists deleting all messages
3. For each message received, determine all the children

of this processor in the tree rooted at the node where
the message originated from.

4. Store the message in the neighbor list for that child
5. If we are done processing data from the furthest nodes

in the torus then terminate, otherwise go to step 2.

26

MDoC All gather
Memory Utilization

The memory used is the total number of messages stored
at one instance of the loop
We want to measure the number of nodes at distance r in
the torus.

1 2 3 4 5 6

1 2 3

4 5 6

| | | | | | | | | | | |
. .

0 , , 1
1 , ,

i

r x x x x x x
s t

x x x
m x x x m

x

= + + + + +

≤ ≤

− + ≤ ≤

∈
2
Mm = Note: M is even.

27

MDoC All gather
Derive the generating function G(X) in which
the coefficient, Gr, of Xr is the number of
nodes at distance r from the origin.

3 | | 3 3 2 1 3

1

()

(1) () (1) (1 2 2 ... 2)

i
i

m
j m m

j m

G X G X

X X X X X X X−

=− +

=

+ = + + + + + +

∑

∑

28

MDoC All gather

() () ()

3 2 1 3

3
36 2 3

2 3

0

(1) (1 2 2 ... 2)

6 211 1 3 3 1
21

6 2
(3 3 1)

2

m m

m i i m m m

i i

i m m m

i j

X X X X X

i
X X X X X X X

iX

i j
X X X X

j

−

≥

+ + + + + +

⎛ ⎞⎛ + ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= + − = − + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
⎡ ⎤⎛ − + ⎞⎛ ⎞⎛ ⎞

= − + − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑

∑ ∑

0

6 2
2r

j

r j
g

j≥

− +⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

2 33()r r m r m r m rG g g g g− − −= − + − +

If

then the number of nodes, Gr, at distance r is

29

MDoC All gather
Total storage required is B*max{Gr}, B is the size of
message.

4,70416,1764,00020
3,8081546,65618
2,97613,1432,76816
2,2721221,95214
1,63210,1113,82412
1,1209800010
675840968
358617286
1264,55124
203642

max{Gr}Distance, r, with
largest number of nodes

Number
of Nodes

K

30

MDoC All gather
Spanning tree gives us minimum path from the root
node to all nodes on the network
Use all the “wires” connecting adjacent nodes at
least once per step.
Wires connecting smaller dimensions of size 2 have
one message sent per step, larger dimensions have
Gr – 3 message split between them.
Total number of message transmissions for one
message is (P – 1) – (# of leaves in the trees)
= 8M – 1 – 4M = 4M – 1 = .5P – 1

31

MDoC Results
Used beta-hairpin as
a base line for
comparison

240 Protein Atoms
3339 H2O

32

MDoC Performance

58.4452.33564

15.4868.81216

8.47916.0958

4.8328.2194

268.2412

speed up/step/atom# of Processors

0 10 20 30 40 50 60

0
10

20
30

40
50

60

of Processors

S
pe

ed
up

sµ

33

Future Work
Add to functionality

NVT and NPT ensemble,
constant pH
MTS

Increase scalability
N/P is “small”
N < P

34

Conclusions for MDoC:
MDoC is the ONLY molecular dynamics
package capable of running on QCDOC and
BG/L.
We believe it is capable of running large
simulation into the microseconds on large
number of processors.
Near perfect utilization of the network for all
gather

matrix-multiplication
Solutions to linear systems

35

Action at a distance formulations
F F F ext

i ij i
j i≠

= +∑

A familiar example is Coulomb’s law, giving the electrostatic force between
two charged particles as

3
0

(x x)
F

4 | x x |
i j i j

ij
i j

q q
πε

−
=

−

ext
i ij i

j i

ψ
≠

Ψ = + Ψ∑

0

1
4 | x x |

i j
ij

i j

q q
ψ

πε
=

−

The potential energy of particle i,

Where, for point charges

36

The timestep loop updates these values using the forces of interaction and
equations of motion to obtain the state of the system at a slightly later time:

1.Compute forces
clear force accumulators
for i=1 to Np do

The Particle-particle method

{x (), v (); 1, }i i pt t i N=

F : 0i =

The state of the physical system at some time t is described by the set
of particle positions and velocities

Accumulate forces
For i=0 to Np-1 do
For j=i+1 to Np do

Find force Fij of particle j on particle i

F : F F

F : F F
i i ij

j j ij

= +

= −

37

2. Integrate equations of motion
for i=1 to Np do

Fv : v

x : x v

new old i
i i

i
new old
i i i

D T
m

D T

= +

= +

3. Update time counter
t:=t+DT

38

Operation count

10Np*Np-Nptotal
6NpUpdate v and x

10Np(Np-1)20
6Update and
3Compute
8Compute
3Compute

Do for Np(Np-1)/2
particle pairs

3NpClear force accumulator
Operations countCalculation

x xi j−
3|x x |i j−

Fij
Fi Fj

39

Typically, a few thousand timesteps are needed to
obtain useful results from a computer experiment, so
the direct summation PP method is viable only for
systems of up to approximately a thousand particles
if forces are long ranged.
e.g. stellar clusters

We can do more particles if the forces are short
range.
e.g. the Lennard-Jones model of atomic liquids

40

Force at a point formulations

F= − ∇Ψ

Forces and potentials may equally be regarded as fields

ii x=xF F(x)|= ix=x(x) |iΨ = Ψ

2
0/φ ρ ε∇ = −

The potential field is related to the source distribution by the field equation,
e.g. for point charges, we got Poisson’s equation:

Where
x=x| ,

ii iqφ φΨ = Is the electrostatic potential and is charge densityρ

41

The Particle-mesh method
PM method exploits the force-at-a-point
formulation and a field equation for the
potential.
The result is a much faster, but generally less
accurate, force calculation than is obtained
using the PP method

42

The timestep loop of the PM method differs from
that of the PP method only in the calculation of the
forces.
The PM force calculation corresponding to the
charged-particle PP example given above consists of
three steps:

1. assign charge to mesh
2.Solve Poisson’s equation on the mesh
3.Compute forces from the mesh-defined potential
and interpolate forces at particle positions.

43

Operations count
operations count = ()pN Nα β+

Where and depend on the particular form of PM scheme being used α β

We will take some characteristic values in order to make a comparison with
PP method:

20α =
3 3

2() 5 log for an () meshN N N N N Nβ = × ×

e.g. taking N=32, Np=10^5, and a machine with a nominal CPU
time per
Floating point operation of 1us, we obtain

CPU time=(20*10^5+5*32^3*15)*10^-6 seconds
=4.5 seconds
~1day for the PP method

44

The disadvantage of the PM method
Loss of resolution in the potential and force
fields
only those field variations which have
wavelength longer than the spacing of the
mesh can be accurately represented by mesh
values.

PM method only can handle smoothly varying
forces.

45

P3M method
P3M method combines the advantages of the PP and PM
methods and enables large correlated systems with long-
range forces to be simulated.

The trick used in the P3M method is to split the
interparticle forces into two parts

F F Fsr m
ij ij ij= +

Where the rapidly varying short range part is nonzero for only a
few interparticle distances and the slowly varying part is sufficiently
smooth to be accurately represented on a mesh.

Fsr
ij

Fm
ij

Operations count
operations count= ()p n pN N N Nα β γ+ +

46

Start
Position {x(nDT)}

Momenta {P((n-1/2)DT)}

Updata step counter
n:=n+1

PM force calculation

-assign charge to mesh

-solve for potentials

-interpolate forces

-increment momenta

PP force calculation
-fill head of chain and linked list

tables

-updata momenta

Equations of motion
-updata positions

-apply particle boundary
conditions

-update energy accumulators

End
Positions {x(nDT)}

Momenta {P((n-1/2)DT)}

47

Parallel FFT algorithm
The overview of the The overview of the twiddletwiddle--factor methodfactor method (four steps (four steps
method):method):

From the view of parallel algorithm, the only step From the view of parallel algorithm, the only step
that needs data transferring is step 3. All the others can that needs data transferring is step 3. All the others can
be accomplished in each of the processes.be accomplished in each of the processes.

11212

2112

212121

22121

*).1:0 , 1:0(

nnnnn

T
nnnn

nnnnn

nnnnn

Fxx
xx

xnnFx
Fxx

××

××

××

××

←
←

−−←
← 1st Multi-row FFT

Twiddle factor
multiplication

Matrix transposition

2nd Multi-row FFT

48

x30
x31

x22
x23

x14
x15

x6
x7

x28
x29

x20
x21

x12
x13

x4
x5

x26
x27

x18
x19

x10
x11

x2
x3

x24
x25

x16
x17

x8
x9

x0
x1

e.g.
Suppose we want to solve , where . is the Fourier
Transform matrix. The method includes:

1. multirow-FFT

xFy 32← 32 and Cxy ∈ 32F

44848 Fxx ×× ←

4F•

49

2. Twiddle factor multiplication:

).3:0,7:0(*.4848 nFxx ×× ←

3. Matrix transposition
Txx 4884 ×× =

4. Multirow FFT 88484 Fxx ×× =

x30 x31x28 x29x26 x27x24 x25

x22 x23x20 x21x18 x19x16 x17

x14 x15x12 x13x10 x11x8 x9

x6 x7x4 x5x2 x3x0 x1

8F•

50

FFT on QCDOC

1 node
(1*1*1)

4 nodes
(4*1*1)

8 nodes
(8*1*1)

16 nodes
(4*4*1)

32 nodes
(8*4*1)

64 nodes
(4*4*4)

128
nodes
(8*4*4)

256
nodes
(8*8*4)

512
nodes
(8*8*8)

1024
nodes
(16*8*8)

2048
nodes
(16*16*8)

4096
nodes
(16*16*16)

128^3 0.246 0.2219 0.1377 0.0956 0.0546 0.034 0.0188 0.0103 0.0057 0.0034 0.0021 0.0013
256^3 2.208 1.8346 1.1311 0.7794 0.4432 0.2751 0.151 0.0823 0.0446 0.0258 0.0147 0.0084
512^3 19.58 15.1565 9.2884 6.3543 3.6048 2.23 1.222 0.6645 0.3591 0.2064 0.1167 0.0652

FFT BG/L

1 node
(1*1*1)

4 nodes
(2*2*1)

8 nodes
(2*2*2)

16 nodes
(4*2*2)

32 nodes
(4*4*2)

64 nodes
(4*4*4)

128
nodes
(8*4*4)

256
nodes
(8*8*4)

512
nodes
(8*8*8)

1024
nodes
(16*8*8)

2048
nodes
(16*16*8)

4096
nodes
(16*16*16)

128^3 0.075 0.1227 0.0873 0.0502 0.0283 0.0158 0.0096 0.0056 0.0033 0.0021 0.0013 0.0008
256^3 0.6857 1.0026 0.7091 0.4065 0.2293 0.1276 0.0768 0.0449 0.0258 0.0162 0.0098 0.0058
512^3 6.1714 8.1922 5.7585 3.2948 1.8552 1.0315 0.6197 0.3618 0.2069 0.1295 0.0778 0.0455

ratio

1 node
(1*1*1)

4 nodes
(2*2*1)

8 nodes
(2*2*2)

16 nodes
(4*2*2)

32 nodes
(4*4*2)

64 nodes
(4*4*4)

128
nodes
(8*4*4)

256
nodes
(8*8*4)

512
nodes
(8*8*8)

1024
nodes
(16*8*8)

2048
nodes
(16*16*8)

4096
nodes
(16*16*16)

128^3 30.49% 55.30% 63.40% 52.51% 51.83% 46.47% 51.06% 54.37% 57.89% 61.76% 61.90% 61.54%
256^3 31.06% 54.65% 62.69% 52.16% 51.74% 46.38% 50.86% 54.56% 57.85% 62.79% 66.67% 69.05%
512^3 31.52% 54.05% 62.00% 51.85% 51.46% 46.26% 50.71% 54.45% 57.62% 62.74% 66.67% 69.79%

51

128^3

0.001

0.01

0.1

1
1 4 8 16 32 64 128 256 512

ru
nn

in
g

tim
e

QCDOC BG/L

256^3

0.01

0.1

1

10

1 4 8 16 32 64 128 256 512

number of nodes

ru
nn

in
g

tim
e

QCDOC BG/L

512^3

0.1

1

10

100

1 4 8 16 32 64 128 256 512

number of nodes

ru
nn

in
g

tim
e

QCDOC BG/L

version 2

0.001

0.01

0.1

1

10

100

1 4 8 16 32 64 128 256 512tim
e

128^3 256^3 512^3

52

4.1Bindwidth
(sec/bit)Tw

7.723usPer hop time
(sec/time)Th

2.8
Computational

capability
(sec/multiply-
add operation)

Tc

Hardware speed
ratio

(BGL/QCDOC)
Blue Gene/LQCDOC

Data analysis

1
500M

1
2 700M×

3us

1.67
500M

1
1.76 700M×

53

1 node
(1*1*1)

4 nodes
(4*1*1)

8 nodes
(8*1*1)

16 nodes
(4*4*1)

64 nodes
(4*4*4)

128^3 2.913/1.7 0.955/0.48 0.503/0.23 0.3/0.2 0.075/0.06

256^3 9.71/6 5.01/2.8 2.7/1.8 0.578/0.65

512^3 26.8/## /5.5

The left table
represents
the running time
of FFT on
QCDOC and
BG/L

From the table and the
chart we can see that
the ratio of running times
on two system is within 2.0.

1 10 100

0.1

1

10

100
comparison of solving 1283 and 2563 FFT

number of processors

ru
nn

in
g

tim
e

QCDOC 2563

BG/L 2563

QCDOC 1283

BG/L 1283

54

Future work
Implement the whole P3ME method on
QCDOC.
Try to implement on BG/L and Nankai star

