Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids with finite density differences
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Abstract. We report nonlinear solutions describing the large-scale coherent motion of bubbles and spikes in the Rayleigh-Taylor and Richtmyer-Meshkov instability for fluids with finite density differences. The non-local character of the interface dynamics is taken into account with a multiple harmonic analysis. The theory yields a non-trivial dependence of the bubble velocity and curvature on the density ratio and reveals an important qualitative distinction between the dynamics of Rayleigh-Taylor and Richtmyer-Meshkov bubbles.
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When a light fluid accelerates a heavy fluid, the misalignment of the pressure and density gradients gives rise to an instability of the interface, and produces eventually the turbulent mixing of the fluids, [1-3]. This phenomenon is called the Rayleigh-Taylor instability (RTI) if the acceleration is sustained [1] and the Richtmyer-Meshkov instability (RMI) if the acceleration is driven by a shock or if it is impulsive [2]. The RT/RM turbulent mixing is of extreme importance in astrophysics, inertial confinement fusion, and many other applications [3]. To obtain a reliable description of the mixing process, the evolution of a large-scale coherent structure, the dynamics of small-scale structures, and the cascades of energy should be understood.

The large-scale coherent structure is an array of bubbles and spikes periodic in the plane normal to the direction of gravity or the initial shock [1,2,4]. It appears in the nonlinear regime of RTI and RMI and has a spatial period determined by the mode of fastest growth [5]. The light (heavy) fluid penetrates the heavy (light) fluid in bubbles (spikes). The density ratio is a determining factor of the instability dynamics [3,4]. Singular aspects of the interface evolution (such as the generation of vorticity and secondary instabilities, resulting in the direct and inverse cascades of energy [6-12], a finite contrast of the fluid densities and the non-linearity of the dynamics) cause theoretical difficulties [13-18] and preclude elementary methods of solution.

For fluids with highly contrasting densities (fluid-vacuum), the effect of singularities on the interplay of harmonics and on the nonlinear motion in RTI/RMI have been studied intensively over the decades [13-16]; a new approach based on group theory has been developed recently in [15,16]. The asymptotic theories [13-16] agreed with experiments and simulations. For fluids with a finite density contrast, the influence of singularities on the cascades of energy and the large-scale coherent dynamics in RTI/RMI has yet to be elucidated [17,18]. A few empiric models proposed in Refs.[3,20] cannot explain the observations completely, [21], and their simplicity masks many outstanding issues [17,21]. In a recent attempt [22] to reproduce the results of the drag model [20] in a single-mode approximation, a complete set of the boundary conditions were not satisfied (see below), and the conservation laws were thus violated.

In this Letter we report multiple harmonic theoretical solutions for a system of conservation laws, which describe the large-scale coherent dynamics in RTI and RMI for fluids with a finite density differences in general three-dimensional case. The analysis yields new properties of the bubble front dynamics. In either RTI or RMI, the obtained dependencies of the bubble velocity and curvature on the density ratio differ qualitatively and quantitatively from those suggested by the models [3,20,22]. For the first time, our theory reveals an important qualitative distinction between the dynamics of the RT and RM bubbles. Asymptotically, the RT bubble is curved, and its curvature has a strong dependence on the density ratio, while the RM bubble flattens independently on the density ratio. The difference in the curvatures of the RT and RM bubbles inter-depends with that in their velocities. Our results explain existing data [7-12,23].

Based on the experimental observations [4,7,9], we divide the fluid interface into active and passive regions, similarly to Ref. [24]. In the active regions (small scales), the vorticity is intensive, while the passive regions (large scales) are simply advected. If the fluids have a finite density contrast and the initial perturbation has small amplitude, the cascades of energy are not extensive in the nonlinear regime [6-12]. A considerable part of the fluid energy concentrates in the large-scale coherent motion. The dynamics of the coherent structure could be described by scalar fields. One can apply therefore the spectral approach and group theory [15,16,25].
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where 
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. In accordance with the condition Eq. (1a) the pressure is continuous at the interface. Equation (1b) is the equation of continuity. If there is no mass flux across the interface, the normal component of velocity is continuous at the interface and
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The boundary conditions at the infinity close the set of the governing equations
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The length scale (i.e. the spatial period), the time-scale, and the symmetry of the motion in Eqs.(1) are determined from the initial conditions. We choose the value of the spatial period  in a vicinity of the wavelength of the mode of fastest growth set by surface tension and viscosity in real fluids, [5]. For RTI, the time-scale is 
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 is the initial velocity value [16,18,19]. In order to be stable under large-scale modulations, the coherent motion in Eqs.(1) must be invariant under one of spatial symmorphic groups with translations in the plane 
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 [15,16,25]. For a 3D flow, these are hexagonal p6mm, square p4mm, rectangular p2mm, and few other groups, [25].

To describe the dynamics of the nonlinear bubble, we reduce Eqs.(1) to a local dynamical system, as in [15,16]. All calculations are performed in the frame of reference moving with velocity 
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In a single-mode approximation (
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 with n=0,1,2, and the system in Eqs.(1,2) is reduced to the expansion of the Layzer-type [14,15,16]. Then, the Layzer-type expansion has a solution, which conserves momentum, Eqs.(1a,2a), and mass, Eqs.(1b,2b) and satisfies Eqs.(1d,2d). For this solution, in the nonlinear regime of RTI, 
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. However, in either RTI or RMI, the single-mode solution violates the conditions of continuity of the normal component of velocity, Eqs.(1c,2c), and requires mass flux across the interface. To evade this issue, Ref. [22] has added an artificial term in the potential of the light fluid, which violated the boundary conditions in Eqs.(1d,2d) and introduced a non-uniform time-dependent mass flow at the infinity. The solution [22] has agreed then with the assumptions of the drag model [20]. In Refs.[20,22] the bubble curvature is 
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 in RMI. We conclude that a single-mode approximation does not satisfy the complete set of the governing equations, Eqs.(1). The Layzer-type nonlinear solution (either in our version or in the model [22]) violates the conservation laws, Eqs.(1,2), and it is not therefore a physical solution. The reason of this difficulty lies in a non-local character of the non-linearity in Eqs.(1,2). A multiple harmonic analysis will resolve the issue.

To find regular asymptotic solutions, describing the nonlinear evolution of the bubble front in RTI or RMI, one should account for non-local properties of the flow that has singularities, [17,18]. The singularities determine the interplay of harmonics in the global flow as well as in the local dynamics system, and affect therefore the shape of the regular bubble. Assuming that the bubble shape, parameterized by the principal curvature at its tip, is free, we find a continuous family of regular asymptotic solutions for the local system. The family involves all bubbles allowed by the symmetry of the global flow. For the regular asymptotic solutions the interplay of harmonics is well captured. We perform the stability analysis and choose the fastest stable solution in the family as being physically significant.
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For 
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Explicit analytical expressions for 
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In the other limiting case, 
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To analyze stability of the obtained solutions, we perturb 
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For the Richtmyer-Meshkov instability, the multiple harmonic regular asymptotic solutions in Eqs. (2) with 
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[image: image138.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

k

A

k

A

k

k

A

k

A

kt

v

1

2

1

2

1

3

1

1

1

8

3

64

9

128

10

3

1

z

-

-

z

-

z

-

z

-

z

+

=

.


(4a)

In contrast to the RT case, in the RM family 
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Higher order corrections for the value of 
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 are stable. Therefore, the physically significant solution in the RM family is the solution (4b).

We apply the foregoing analysis for 3D flows with other symmetries and 2D flows. In either RTI or RMI, the nonlinear dynamics of 3D highly symmetric flows (p6mm, p4mm, [25]) coincide except for the difference in the normalization factor k, [26]. A nearly isotropic shape of the bubble is the reason of this universality. The 2D and 3D results are similar qualitatively. In main order, 
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, similarly to [15,16] for A=1. For 3D low-symmetric flows, the asymptotic analysis shows a tendency of 3D bubbles to conserve isotropy in the plane, and a discontinuity of the 3D-2D dimensional crossover.

Based on the obtained results, we expect the following dynamics of the bubble front in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids with a finite density contrast in the case of a small initial perturbation. In RTI, the bubble curvature 
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Figures 1, 2, and 3 compare our results with the models [20,22] and with the foregoing Layzer-type solution, which agrees with Ref. [3]. For 
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Our results are in good agreement with existing data [7-12,23]. In RTI, the 2D numerical simulations in Ref. [23] agree quantitatively with the solution Eqs.(3b-d). In RMI, the bubble flattening has been observed in many 2D and 3D observations [9-12,23], in particular, in the experiments in Ref. [9], accurately reproduced by the simulations in Ref.[12]. The measurement of the bubble curvature requires however an improved diagnostics of the interface dynamics. Owing to the lack of data, we cannot perform a detailed quantitative comparison with all experiments and simulations here.

We conclude that in either RTI or RMI the bubble curvature is a sensitive diagnostic parameter. The value of 
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 defines how flat or narrow the bubble is for a given length scale. This dimensionless shape parameter is related to the bubble velocity and determines the flow drag. The value of the drag force in the chaotic RTI and RMI is still a subject to controversy [21], and the models [3,20] do not predict the bubble shape and width correctly, [4]. Our theory resolves the problem for highly nonlinear RTI and RMI. The major issues to check by experiments and simulations are the following. Does the curvature of the RT bubble have a strong dependence on the Atwood number or reach an A-independent value? Does the curvature of the RM bubble asymptotically vanish or approach a finite value?

For the bubble velocity, the experiments and simulations in RTI [7,8] have been in a reasonable agreement with the dependencies 
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 in this dependence is impossible to evaluate. In contrast, the bubble curvature is a reliable diagnostic parameter as discussed in the foregoing.

Our theory describes the principal influence of the density ratio on the large-scale nonlinear dynamics of the RT and RM bubbles. The analysis is based on the assumptions that the flow dynamics is governed by a dominant mode, the transfers of energy to smaller or larger scales are not extensive, and the vorticity does not change the time-dependence of the large-scale coherent motion. If these conditions are broken (for example, for fluids with very close densities, 
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), the potential approximation may not give a correct time-dependence for the asymptotic bubble motion. We address these important issues in the future.

In conclusion, we have found a multiple harmonic solution for a complete system of conservation laws, describing the large-scale coherent dynamics in RTI/RMI in general three-dimensional case. The theory yields new dependencies of the bubble curvature and velocity on the density ratio in RTI and RMI, and predicts in a consistent manner an important quantitative difference between the dynamics of the RT and RM bubbles.
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Figure Captions

Fig.1: Dependence of the bubble curvature on the Atwood number A for 3D highly symmetric flows in the Rayleigh-Taylor and Richtmyer-Meshkov instabilities; k is the wavevector, 
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Fig.2: Dependence of bubble velocity v on the Atwood number A for 3D highly symmetric flows in the Rayleigh-Taylor instability; k is the wavevector and g is gravity, 
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Fig.3: Dependence of the bubble velocity v on the Atwood number A for 3D highly symmetric flows in the Richtmyer-Meshkov instability; k is the wavevector, t is time, 
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