A Fast Algorithm for Moving Interface Problems
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Abstract. Numerical simulations of a spherical shock refraction have
been successfully conducted by a front tracking method. We demonstrate
the efficiency of the front tracking algorithm by comparing the L;-error
of spherical simulations by tracked and untracked methods. We find that
the tracked algorithm is about 64 (256) times faster than the correspond-
ing method without tracking the interface for a 2d (3d) simulation.

1 Introduction

The numerical method we use for computing axisymmtric flow in the paper is a
front tracking method. Front tracking is an adaptive computational method in
which a lower dimensional moving grid is fit to and follows distinguished waves in
a flow. Tracked waves explicitly include jumps in the flow state across the waves
and keep discontinuities sharp. A key feature is the avoidance of finite differenc-
ing across discontinuity fronts and thus the elimination of interfacial numerical
diffusion including mass and vorticity diffusion. In addition, nonlinear instability
and post-shock oscillations are reduced at the tracked fronts. Front tracking as
implemented in the code FronTier includes the ability to handle multidimensional
wave interactions in both two [7,13,18] and three [6,5] space dimensions and
is based on a composite algorithm that combines shock capturing on a spatial
grid with a specialized treatment of the flow near the tracked fronts. Applica-
tions have included the Rayleigh-Taylor (RT) [3,12,11] and Richtmyer-Meshkov
(RM) [8,17,19, 20, 10] instabilities. The Rayleigh-Taylor instability occurs when
a fluid interface is accelerated in a direction opposite to the density gradient
across the interface, while Richtmyer-Meshkov instability is induced by the re-
fraction of shock waves through a fluid interface. FronTier is implemented for
distributed memory parallel computers and some of the fundamental algorithms
used in this code are described in [1,14,15,4,9,16].



In this paper, we give a brief summary of the front tracking algorithm for ax-
isymmetric flow. We report simulations of spherical shock refraction by applying
this algorithm. Spherical shock refraction arises in the evolution of supernova
and in inertial confinement fusion, and thus of fundamental importance to sci-
ence and technology. We show that the front tracking is a fast algorithm through
an error comparison study for both tracked and untracked spherical simulations.

2 Formulation

The three dimensional Euler equations in rectangular coordinates (x,y, z) can
be written as

pt +V - (pv) =0, (1)
(pv)t + V- (pv ® v) + Vp = pg, (2)
(pE)¢ + V- (pEv + pv) = pv - g, (3)

where p is the mass density of the fluid, v is the fluid velocity, £ = e + %'u v
is the total specific energy with the specific internal energy e, p is the pressure
and g is the body force, which we will take as pointing in the eg directing, i.e.
vertically upwards. The equations (1), (2) (3) describe the conservation laws of
mass, momentum, and total energy for a non-reacting compressible fluid.

We introduce cylindrical coordinates (r,6, z) by the transformation:

T =rcosf,
y =rsiné,
z=2z.

Let e; = (1,0,0), e2 = (0,1,0), es = (0,0,1) be the unit vector basis for
the rectangular coordinate system. Let (7,8, z) be the unit vector basis for the
rotational coordinate system defined by

r = ejcosf + ezsinb,
0 = —e1sinf + ez cosb,

zZ = e3.

Let v = vor+viz+vy0 and g = gor + g1 2+ gp0. Assuming rotational symmetry
of the solution p, pv, pE of (1)-(3), vs = 0, g9 = 0 and the system is independent
of 8. Under rotational symmetry and using this rotational coordinate system the
equations (1), (2), (3) can be transformed to:

1
Pt + (pUO)r + (P’Ul)z = _;P'UO; (4)
1
(pvo)e + (pv3)r + (pvov1): + pr = —;Pvg + pgo, (5)

1
(pv1)t + (pv1vo), + (pv7): + p2 = = PULV0 + PgL, (6)



1 1
(PE)t + (pEvo)r + (pEv1): + (pvo)r + (pv1). = —;PEUO ~ Do

+p(govo + g1v1). (7)

The system is closed via a thermodynamic equation of state relates density,
pressure, and energy, most commonly though a functional relation p = p(p,e).

3 Axisymmetric Front Tracking Algorithm

In this section, we present a brief summary of the front tracking algorithm for
axisymmetric flow. For a detailed description of the front tracking algorithm,
we refer to Glimm, Grove and Zhang [9]. The validation was carried out by
comparison with experiment, see Drake et al. [2].

Front tracking is a numerical method in which selected waves are explicitly
represented in the discrete form of the solution. Examples include shock waves,
contact discontinuities, and material interfaces. Other waves, such as leading and
trailing edges of rarefaction waves, have continuous states but jumps in their
first derivatives. Tracked waves are propagated using the appropriate equations
of motion for the given model. For example, if the system of equations consists
of a set of hyperbolic conservation laws, u; + V o f = h, then the instantaneous
velocity s of a discontinuity surface satisfies the Rankine-Hugoniot equations,
s[u] = [f] e n. Here n is the unit normal to the discontinuity surface. During a
time step propagation, the type of a wave, and the flow field in a neighborhood
of the wave determine a local time integrated velocity for each point on the wave
in the direction normal to the wave front. Wave propagation consists of moving
each point a distance sAt in the normal direction as well as computing the
time updated states at the new position. Tracking preserves the mathematical
structure of the discontinuous waves by maintaining the discrete jump at the
wave front, thus eliminating numerical diffusion. It also allows for the direct
inclusion of the appropriate flow equations for the wave front in the numerical
solution.

The discrete representation of the flow is based on a composite grid that
consists of a spatial grid representing the flow field in the bulk fluid, together with
a co-dimension one grid that represents the fronts. Fig. 1 shows a two dimensional
schematic of a time step snapshot of such a grid. The front is represented by a
piecewise linear curve, the sections of which are called bonds. In contrast to the
spatial grid, which is fixed in time (i.e., Eulerian), the fronts move according
to the dynamics of the wave fronts that they represent. A single time step is
divided into two processes, the propagation of the fronts, and the updating of
the solution on the spatial grid.

Stored with each point are two states to represent the discontinuity across
the wave. An orientation is given along the curve so that we may speak of the left
and right states at a point. Therefore, propagation of the front can be defined as
updating the position of each point on the front and updating the corresponding
left and right states associated to it at a new time t + At. Operator splitting,
in the rotated coordinate system (T', IN), allows separate propagation steps in
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Fig. 1. A representation of the grid for a front tracking computation. The solution is
represented on the union of a spatial finite difference grid and a dynamic grid that
follows the fronts.

directions normal to and tangent to the front, where N = Nor + N1z, T =
Tor + T} z are the normal and tangential unit vectors at some point on the front.
Then the velocity v can be rewritten as v = vy N +vrT, vog = vy No+v7TH and
g = gnvIN + grT. The equations in the normal propagation step are formed by
the projection of the equations (4)-(7) onto the normal direction as the following

pet oy (Pon) = —%vaNo, (8)

(o) + (% + ) = =1 A No + pa, )

(por): + gacpunvr) = —1puron Vo, (10)

(PE): + 8({])\7 (pEvn) + 8({])\7 (pon) = _%pEUNNO - %pUNNO + pgnon. (11)

The tangential propagation is performed on each side of the front followed
by the normal propagation. Since the solution is smooth during the tangential
propagation, a convenient finite difference scheme, such as the second order
MUSCL scheme, can be used to update the states at each point on the front by
solving the follow equations which are formed by the projection of the equations
(4)-(7) onto the tangential direction

0 1
T a7 =7 (pvr) = —;PUTTO, (12)

8 1
(pvr): + 2= (P07 +p) = —;pv%To + pgr, (13)

or

1
(pvN ) + PUTUN) = _;/)UN'UTTO; (14)
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(pE)t + %(pE’UT) + 8%(])1)1“) = —%pE’UTTO — %p’UTTo + pgrvuT. (15)
Notice that tangential propagation of points on the front is equivalent to remesh-
ing of the front, in the limit At — 0, so it is not essential to move these points
during the tangential update. Finally we update the states in the interior smooth
region by solving the system of equations (4)-(7) using the MUSCL algorithm
with the front data as a boundary condition. Thus we never perform finite dif-
ferencing across the front and keep all discontinuities perfectly sharp.

4 Spherical Shock Refraction

In this section, we report the simulation of a spherical shock refraction problem
by applying the algorithm described in the previous section. An application
of axisymmetric front tracking algorithm in chaotic fluid mixing is shown in
Fig. 2, that presents a cross-sectional view of the mixing layer generated by
RM instability in a randomly perturbed axisymmetric SFg sphere driven by an
imploding shock wave from the air outside the sphere. See Glimm et al. [10],
where a series of numerical validation issues are addressed.

Fig. 2. Cross-sectional view of the growth of instability in a randomly perturbed az-
isymmetric SFe sphere driven by an imploding shock wave in the air.

Now we show that our front tracking is a fast algorithm by comparing the
Li-error in the tracked simulations to the error of untracked method. In the un-
tracked computation we apply the second MUSCL scheme to the entire domain.



Our comparison study is carried out for an unperturbed interface since this case
admits an easily understood exact solution which can be obtained by solving a
one dimensional spherical problem on a very fine mesh. The (r, z) computational
domain is [0, 7] x [0, 1], with 71 = 2z; > 0. The origin is denoted by Py = (0, 0).
Let R denote the distance from any point in the computational domain to Fp.
The contact surface is located at the circle R = Ry. In our experiment, we place
the incident shock wave in the outer light fluid at a sphere R = Ry > Ry, mov-
ing toward to the origin. Due to the rotational symmetry, we are considering
a spherical imploding problem. The initial configuration of the system contains
three regions: the region behind the incident shock, the region between the inci-
dent shock and the fluid interface, and the region enclosed within the interface.
The states ahead of the shock are initialized by the prescription of the densities
inside and outside of the contact surface, the pressure and the velocities of two
fluids. The state behind the shock is determined by a prescription of the the
Mach number of the shock. A reflecting boundary condition is used at the left
side, i.e. the » = 0 axis. Flow-through boundary conditions are applied at the
circular boundary R = R4, outside of which is a constant flow region where
no computation is needed. The physical parameters for our simulations are: the
density ratio 20:1, the shock Mach number M = 10. We use a gamma gas law
with v = 1.66 for our calculations. The density plots for spherical shock refrac-
tion is shown in Fig. 3 for both tracked and untracked simulations from which
we see that mass diffusion is evident in the untracked density plots.

In order to compute the errors, we denote pp(r, z,t) the discrete density from
a 2D simulation. Let p(r, z,t) be the exact density which is obtained by mapping
the fine grid 1D spherical density to the 2D domain. We define the total time
integrated L;-error on the computational domain 2 = {(r,z) : Vr2 +22 <
R0z} as following:

T
lon = llsany = [ [ 1nrz,0) = ozl
0

Table 1. Comparison of the total L; error for tracked and untracked simulations for
the 200 x 200, 400 x 400, 800 x 800 grid levels.

Method 200 x 200 400 x 400 800 x 800

Tracked 2.3x107° 1.4x107° 0.8x107°
Untracked 4.2x107° 3.1x107° 22x10°°

We conduct the simulations for the grid size of 200 x 200, 400 x 400, 800 x 800
using tracked and untracked methods. The errors for various cases are listed
in Table 1, from which we find that the tracked error for a 200 x 200 grid is
comparable to the untracked error for a 800 x 800 grid. Therefore, tracking
can reduce the required mesh refinement by a factor of 4 in each space time
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Fig. 3. Density plots for a spherical implosion simulation with an unperturbed interface.
The three images on the top show the evolution of a tracked contact att =0, after the
transmission of the shock and after the reshock respectively. The three images on the
bottom show the evolution of the untracked contact at the same three times. The grid
size 15 200 x 200.

Table 2. Comparison of the CPU time (minutes) for tracked and untracked simulations
for the 200 x 200, 400 x 400, 800 x 800 grid levels.

Method 200 x 200 400 x 400 800 x 800

Tracked 28 230 1747
Untracked 25 202 1687

dimension. The corresponding CPU times are listed in Table 2. We observe that
for the same grid level the tracked method only spends 3% — 15% more time than
the untracked one. We also notice that the CPU time of the untracked simulation
for 800 x 800 grid is about 60 times of the tracked run for 200 x 200 grid. (Note
64 times is a theoretical prediction). Therefore the tracked algorithm is about
64 times (256 times) faster than the corresponding method without tracking the
interface for 2d (3d) simulations.

5 Conclusions

We have presented a spherical shock refraction simulation by the front tracking
method. We have shown that the tracking algorithm can reduce the level of



mesh refinement by a factor of four compared to the required mesh refinement
in the untracked method for a given error tolerance. Therefore the front tracking
method can reduce the computational time enormously (a factor of 256 in space
time zones for 3D simulations).
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