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Abstract

We are concerned here with the analysis and partition of uncer-

tainty into component pieces, for a model prediction problem for 
ow

in porous media.

1 Introduction

In previous papers we have developed a Bayesian approach to uncertainty
quanti�cation [8, 9, 10] and the analysis of errors [5, 4, 6, 3, 2, 7] in numerical
simulations. Prediction depends on both inverse and forward solutions, the
former to �x the model and its parameters and the latter to solve the model
and make predictions. In the Bayesian framework, the indeterminacy poten-
tially inherent in the inverse solution is resolved by the use of a probability
framework. In this framework, the probabilities of observation and solution
errors are the leading contributions to the likelihood of an observation, which
is a key factor in the de�nition of the posterior. The posterior is a probability
distribution for models and parameters as constrained by observations. Both
the inverse and the forward steps depend on the forward simulation, errors
in which introduce error and uncertainty into the analysis.

The purpose of this paper is to analyze and partition prediction uncer-
tainty into component pieces associated with substeps of the prediction pro-
cess. As with earlier papers, we illustrate our ideas with a simpli�ed study
of prediction for an idealized petroleum reservoir. We suppose that we have
observations of oil production from an early time period (the \past") and we
use this information to constrain the prediction of the production for a later
period (the \future"). The past production is known but the geology which
gives rise to it is not. The errors or uncertainty in predictions of future pro-
duction depend on geological, physical, and numerical parameters, e.g. the
geology correlation length, the oil to water viscosity ratio, and the coarseness
of the mesh used in simulating either the forward or inverse problems.

Our goal is model transparency. We want an uncertainty model, that is
simple to describe in an understandable and plausible manner the separate
contributions to uncertainty, but accurate enough that it does not add to or
increase the uncertainty being explained. Not only is such a model of bene�t
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to the user. More importantly, such a model has a higher chance of being
transferable from one problem to another. Because error models require
extensive computation to validate and calibrate, the ability to transfer them
(from a simple to a more realistic context) is important for the practical
application of uncertainty analysis in general.

Our predictions yield a probability distribution for future oil production,
based on observations of past oil production. The point of the uncertainty
analysis is to assess the spread (uncertainty) contained in this distribution.
For example, a probability concentrated at a single value for future produc-
tion would indicate zero uncertainty. To assess the overall prediction un-
certainty, we consider the standard deviation of the ensemble of prediction
errors; the ensemble corresponds to di�erent choices for the reservoir which
generates the observations of the past production. Each prediction error has
been non-dimensionalized by dividing it by its prediction and and this nor-
malization has been performed before the standard deviation is computed.
The standard deviation � is estimated by a Least Squares approximation of
the slope of a normal plot of prediction errors, as distributed over the en-
semble. The conventional 5%, 95% con�dence intervals are then given as the
mean prediction �1:96�.

The main result of this paper is to estimate the separate contributions to
�. The observations are insuÆcient to specify the geology. As a result there
is an inherent uncertainty in the problem speci�cation. This contribution to
� is labeled �geology. In addition there is uncertainty associated with the use
of approximate numerics to solve the inverse and forward problems, which we
denote by �inverse and �forward. Finally, since we consider simpli�ed (approxi-
mate) statistical methodologies, we introduce �statistics to quantify the e�ects
of these approximations. Use of �nite sized ensembles and observational error
introduce other uncertainties, not, considered here.

If the various sources of uncertainty were independent, then the � would
combine according to the rule

�2
total =

X
i

�2
i (1)

While this formula is useful qualitatively, we observe deviations from it in
the range of 30% - 50%, indicating signi�cant correlation among the di�erent
contributions to the uncertainty. We have been able to observe directly only
some of the individual �i. For the others, some version of (1) is used to de�ne

the missing �i, tacitly assuming independence.
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A second result is to determine the dependence of the various �i on the
parameters de�ning the problem. These parameters represent geological,
numerical, and physical information (explanatory variables) which may be
assumed to be known. Even in our simple study, the explanatory variables
take on 60 distinct values in total. Thus it is important to compress and
synthesize this information, so that useful and comprehensible trends in the
dependence of the various � on the explanatory variables can be understood.

Finally, we observe a general ordering in the magnitudes of the various �:

�geology � �forward � �inverse � �statistics (2)

which must be a consequence of the speci�c features of porous media 
ow
adopted in this work.

2 The Problem Formulation

The present paper and earlier ones in this series [5, 4, 6, 3] serve to establish a
proto-type model for solution errors for 
ow in petroleum reservoirs. In order
to focus on the uncertainty quanti�cation issues, we have examined somewhat
idealized reservoir descriptions. The idealized Darcy and Buckley-Leverett
equations

v = �K�rp ; r � v = 0

st + v � rf = 0

are solved for a total seepage velocity v and oil saturation s. Here K =
K(x; z) is the random total permeability, � the relative transmissivity and
f the fractional 
ux. The permeability K is sampled from a lognormal
distribution. The 
ow is nondimensionalized to lie in the unit square 0 �
x; z � 1. See also [4, 6] for a more detailed speci�cation of the simulations.

Our error model is based on arrival time di�erences for solution 
ux values
(the observed oil to water production data, or oil cut), and thus measures
errors in the propagation wave speeds, or saturation level sets, as the relative
oil 
ux is a (nonlinear) function of the saturation. The arrival time errors
are non-dimensionalized through their expression as a fraction of the actual
arrival time intervals. These response variables parameterize the observations
made in the past. We parameterize future observations with the total future
oil production. We consider the dependence of the response variables upon
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the scaleup mesh spacing, the geology heterogeneity length scale and the
hydrocarbon vs. injected 
uid viscosity ratio. These are the explanatory
variables. The scaled up mesh spacing [12, 13, 1, 11, 14] uses 5, 10 and
20 cells between wells, with a �ne grid geology model de�ned by 100 cells
between wells. The horizontal correlation length of the permeability �eld
varies by a factor of �ve, from the fraction � = 0:2 of the inter well spacing to
the entire inter well spacing � = 1:0, with the values � = 0:2; 0:4; 0:6; 0:8; 1:0.
The vertical correlation length is �xed at 0:02 as a fraction of the vertical
reservoir height. The viscosity ratio �, needed in the de�nitions of � and f ,
varies from 5 to 40 with values � = 5; 10; 20; 40. Thus values typical of both
water 
ooding and oil-gas systems are included.

The di�erence between the �ne grid and the coarse grid solution is the
solution error, which we study here. We only examine the oil cut, so the so-
lution and the error are time series. We are not using actual production data
in this study. We therefore model the real problem by selecting a particular
geology Ki0 as the \correct" one, and consider the �ne grid solution oil cut
si0 as a stand in for the observed oil production O.

We assume we have production data up to the present time T0, de�ned
in terms of an oil cut level si0(T0), here selected as 0.8, 0.6, or 0.4. For each
choice of horizontal correlation length � 50 geologies, sampled from a given
log normal distribution, de�ne the prior distribution P (K). According to
Bayes theorem, the posterior P (KjO)

P (KjO) =
P (OjK)P (K)R
P (OjK)P (K)dK

:

P (KjO) is de�ned in terms of a likelihood, P (OjK), for the observation O
to occur assuming the geology K is correct. Let sf and sc denote the �ne
and coarse (upscaled) solutions, respectively. As explained above, we choose
sf;i0 as a stand in for an actual observation O. In evaluating the likelihood,
we take O = sf;i0 and compare to sc;j, j 6= i0. The likelihood is thus the
probability of an error in sc;j suÆcient to produce the discrepancy

sf;i0(t)� sc;j(t); 0 � t � T0 :

Since we assume Kj is correct in evaluating the likelihood, the likelihood
speci�es the probability of a solution error of a given size, to which we apply
our Gaussian error model. See [4] for more detail.

We specify the arrival time error model with �ve degrees of freedom. They
are the breakthrough time and incremental elapsed time at oil cut levels of
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0.8, 0.6, 0.4 and 0.2. To avoid an undue in
uence from numerical di�usion
in the coarse grid simulations, we de�ne the breakthrough time in terms of
an oil cut value of 0.95. That is �(tl) = t(Sl)� t(Sl�1), where

t(Sl) = sup
t

fs(t) � Slg; (3)

and Sl = 1� 0:2 � l; 0 � l � N , and �(S0) = t(S0). Thus, the errors to be
modeled are e(Sl) = �f(Sl) � �c(Sl), the time di�erence between a given
change in the oil cut level for the �ne and the coarse grid solutions. The
mean and covariance matrix of the error are estimated by

e(l) =
1

n

X
i

ei(l) (4)

Cs(l; m) =
1

n� 1

X
i

�
ei(l)� e(l)

��
ei(m)� e(m)

�
(5)

This elapsed time error model is used only to model the past, t � T0,
while future oil production

Z �nal time

present

si(t)dt (6)

is used to describe the future. The �nal time is set at 1.4 (PVI) in (6) and
si might denote the �ne or coarse grid solution. We correct the course grid
solution for the mean solution error in all of its uses.

3 Findings

The standard deviation for the relative error in prediction provides a con-
venient method for quantitative assessment of the accuracy of a prediction.
The standard deviation is computed from the the Bayesian posterior and the
error model for forward simulations. They are computed for each choice of
exact geology i0 and then averaged (RMS) over i0 to yield a �nal value.

This method is not applicable for �ne grid solutions. For the �ne grids,
we specify an arrival time window (size 0.03) for past observations of the oil
cut. Simulations passing through this window de�ne the posterior.
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3.1 Approximate independence of distinct error sources

We make precise the de�nitions of the di�erent �i which will enter into our
analysis. �geology represents the uncertainty inherent in the prediction prob-
lem. �geology originates in the incomplete set of observations (the oil cut)
used to characterize the reservoir. It is de�ned as the standard deviation as-
sociated with the following prediction problem: the posterior is determined
by �ne grid solutions, using the windowing method, while the future is also
simulated using the �ne grid. �forward is de�ned as the standard deviation of
the prediction error resulting from use of the upscaled solution operator for
forward predictions, starting from a knowledge of the exact geology. �inverse,
the uncertainty in the selection of the posterior distribution, i.e. the in-
verse problem, is not directly observable, so we de�ne it in terms of an RMS
di�erence

�2
Bayes � = �2

geology + �2
inverse (7)

where �Bayes � is de�ned prediction � for prediction based on the Bayesian
posterior (e.g. course grid solutions for the inverse problem) and the �ne grid
solutions for the forward simulation. The statistical uncertainty is also not
directly observable, and is de�ned in terms of an RMS di�erence

�2
Bayes � stat = �2

Bayes � + �2
stat (8)

where �Bayes � stat is the standard deviation associated with the Bayesian pre-
diction using a �ne grid solution for the forward step, and an approximate
statistical model for the coarse grid error covariance used for the inverse
problem in the de�nition of the Bayesian posterior. We consider two ap-
proximate statistical models: a diagonal covariance and a simple parametric
model in which the diagonal covariance entries satisfy a linear dependence
on explanatory variables. See [7] for details. For comparison with (1), we
de�ne �Bayes stat as the standard deviation associated with the Bayesian pre-
diction using a coarse grid for both the inverse and forward steps and an
approximate statistical model for the solution error covariance.

Eq. (1) asserts that

�2
Bayes stat � �2

total � �2
geology + �2

forward + �2
inverse + �2

stat : (9)

Eliminating the trivial combinations from this formula which collapse by
de�nition, we are asserting that

�2
Bayes stat � �2

total � �2
Bayes � stat + �2

forward : (10)
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There are actually three versions of this formula, with the full statistics
covariance (no approximations), the diagonal covariance and the parametric
model diagonal covariance. The formula asserts independence of prediction
errors associated with the inverse and forward (past and future) aspects of
prediction.

To assess the accuracy of (10), we perform an RMS average over all ex-
planatory parameter values of �total as de�ned by the formula and of �Bayes stat

as de�ned directly. We �nd that (10) explains about 2/3 of the value of �total
compared to �Bayes stat in the sense of an RMS average of the dependence of
both sides of the equation on the explanatory parameters.

3.2 Dependence of error on problem parameters

Here we develop a parametric model for the dependence of the various �i on
the explanatory variables. We propose a relation of the form

ln�2
i = a0 + ageologyxgeology + ameshxmesh + apxp (11)

Here the a's are coeÆcients to be determined and the x's represent values
for the explanatory variables. Thus xmesh = �x=D where D is the interwell
spacing and �x is the scaled up mesh spacing. Also xp is the natural log-
arithm of the ratio of the displaced to displacing viscosities, and xgeology is
the horizontal correlation length, expressed as a fraction of D. These de�ni-
tions are modi�ed from related de�nitions in [7]. With these de�nitions, our
main result for this section is a table of the a's for each �i, together with a
percentage of the RMS parametric variability captured by this formula. The
a's are obtained from a nonlinear regression, to minimize errors in a �t to
the exponential of (11). See Table 1.

We now discuss these results qualitatively. �geology increases strongly with
correlation length and viscosity ratio. This dependence is shown graphically
in Fig. 1. Note that although the viscosity ratio has nothing to do with the
geology, it a�ects the 
ow, and the degree to which the 
ow is predictable or
unpredictable. High viscosity ratios make the 
ow less predictable. �forward
has a strong dependence on the degree of scale up (mesh spacing), moderate
dependence on the correlation length and very little dependence on the vis-
cosity ratio. See Fig. 2. �Bayes � (�ne grid forward simulation) is remarkably
independent of the degree of scale up in the inverse problem, shows only a
slight increase with viscosity ratio, but is strongly increasing with correlation

8



a0 ageology amesh ap % predictivity
�Bayes stat -6.09 1.27 1.51 0.12 91 %
�total -6.16 1.40 2.53 0.24 93 %
�geology -7.19 1.64 0.0 0.44 92 %
�forward -8.14 1.55 6.62 0.31 90 %
�inverse -4.31 0.09 3.50 -1.08 55 %
�stat -8.54 1.11 3.73 -0.39 33 %

Table 1: Parametric model coeÆcients and RMS per cent predictivity of the
model. The values given here utilize the parametric model for the diagonal
approximation to the covariance to the error.

length. �inverse, with its indirect de�nition, is somewhat less well predicted
by the parametric model, but shows signi�cant decrease with increasing vis-
cosity ratio, and a possible increase with correlation length. The statistical
standard deviation �stat for both diagonal covariance and for the parametric
model for the diagonal covariance is small, so that the parametric dependence
and the relative error in these quantities is not of much signi�cance. We note
also a small correction to Tables 3 and 4 of [7]: the full error model con�dence
intervals should be incremented by about one percentage point. This being
done, the three di�erent statistical models (exact and two approximations)
are nearly identical, again showing that a �stat or con�dence interval inferred
from this data will be very small.

3.3 Ordering of error sources by magnitude

The main results of this section are summarized in Table 2, which justi�es
the ordering given in (2). Each entry is de�ned as an RMS average over the
60 explanatory parameter values, or over those values for �xed �x.
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