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The Problem 

Problem: maintain a dynamic dictionary on disk.
Motivation: file systems, databases, etc. 

State of the art: 
• B-tree [Bayer, McCreight 72]

• cache-oblivious B-tree [Bender, Demaine, Farach-Colton 00]

• buffer tree [Arge 95]

• buffered-repository tree[Buchsbaum,Goldwasser,Venkatasubramanian,Westbrook 00]

• Bε tree [Brodal, Fagerberg 03]

• log-structured merge tree [O'Neil, Cheng, Gawlick, O'Neil 96]

• string B-tree [Ferragina, Grossi 99]

• etc, etc! 

State of the practice: 
• B-trees + industrial-strength features
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Sequential inserts in B-trees have near-optimal 
data locality  

B-trees are Fast at Sequential Inserts
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Sequential inserts in B-trees have near-optimal 
data locality  

• One disk I/O per leaf (which contains many inserts).  

• Sequential disk I/O. 

• Performance is disk-bandwidth limited.

B-trees are Fast at Sequential Inserts
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These B-tree nodes reside 
in memory

Insertions are into 
this leaf node
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High entropy inserts (e.g., random) in B-trees 
have poor data locality 

• Most nodes are not in main memory.

• Most insertions require a random disk I/O.

• Performance is disk-seek limited.

• ≤ 100 inserts/sec/disk (≤ 0.05% of disk bandwidth). 

B-Trees Are Slow at Ad Hoc Inserts
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These B-tree nodes reside 
in memory
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B-trees Have a Similar Story for Range Queries

Range queries in newly built B-trees have good 
locality

Range queries in aged B-trees have poor locality
• Leaf blocks are scattered across disk.
• For page-sized nodes, as low as 1% disk bandwidth.
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Leaf nodes are scattered 
across disk in aged B-tree.
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Results

Cache-Oblivious Streaming B-tree [Bender, Farach-
Colton, Fineman, Fogel,  Kuszmaul, Nelson 07]

• Replacement for Traditional B-tree

• High entropy inserts/deletes run up to 100x faster

• No aging --> always fast range queries

• Streaming B-tree is cache-oblivious
‣ Good data locality without memory-specific parameterization.
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Results (cont)

Fractal TreeTM database
• TokuDB is a storage engine for MySQL
‣ A storage engine is a structure that stores on-disk data.
‣ Traditionally a storage engine is a B-tree. 

• MySQL is an open-source database
‣ Most installations of any database

• Built in context of our startup Tokutek. 

Performance
• 10x-100x faster index inserts

• No aging

• Faster queries in important cases
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Creative Fundraising for Startup
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Algorithmic Performance Model

Minimize # of block transfers per operation

Disk-Access Machine (DAM) [Aggrawal, Vitter 88]

• Two-levels of memory.
• Two parameters: 

     block-size B, memory-size M. 

Cache-Oblivious Model (CO) [Frigo, 

                                                            Leiserson, Prokop, Ramachandran 99]

• Parameters B and M are unknown 
to the algorithm or coder.

• (Of course, used in proofs.)

Memory

Disk

B

B
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Fractal Tree Inserts (and Deletes)
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Example: N=1 billion, B=4096
• 1 billion 128-byte rows (128 gigabytes) 
‣      log2 (1 billion) = 30

• Half-megabyte blocks that hold 4096 rows each
‣      log2 (4096) = 12

• B-trees require         = 30/12 = 3 disk seeks (modulo swapping, 
but at least 1*

• Streaming B-trees require         = 30/4096 = 0.007 disk seeks

B-tree Streaming B-tree

Insert O(logBN)=O(       ) O(       )logN
logB

logN
B

logN
logB

logN
B
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Random Inserts into Fractal Tree (“streaming B-
tree”) and B-tree (Berkeley DB)

Inserts into Prototype Fractal Tree
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Fractal Tree
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Point searches ~3.5x slower (N=230)
• Searches/sec improves as more of data structure fits in 

cache)

Searches in Prototype Fractal Tree
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Asymmetry Between Inserts and Key Searches

Small specification changes affect complexity

E.g., duplicate keys
• Slow: Return an error when a duplicate key is inserted
‣ Hidden search

• Fast: Overwrite duplicates or maintain all versions
‣ No hidden search

 E.g. deletes
• Return number elements deleted is slow
‣ Hidden search

• Delete without feedback is fast
‣ No hidden search
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Asymmetry Between Inserts and Key Searches

Small specification changes affect complexity

E.g., duplicate keys
• Slow: Return an error when a duplicate key is inserted
‣ Hidden search

• Fast: Overwrite duplicates or maintain all versions
‣ No hidden search

E.g. deletes
• Slow: Return number of elements deleted
‣ Hidden search

• Fast: Delete without feedback
‣ No hidden search

Next slide: extra difficulty of key searches
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Extra Difficulty of  Key Searches
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Asymmetry Between Inserts and Key Searches

Inserts/point query asymmetry has impact on
• System design. How to redesign standard mechanisms 

(e.g., concurrency-control mechanism).

• System use. How to take advantage of faster inserts 
(e.g., to enable faster queries). 
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Overview of Talk
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Overview

External-memory dictionaries

Performance limitations of B-trees

Fractal-Tree data structure (Streaming B-tree)

Search/point-query asymmetry

Impact of search/point-query asymmetry on 
database use 

How to build a streaming B-tree

Impact of search/point-query asymmetry on system 
design

Scaling into the future
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Search/point-query asymmetry affecting 
database use



key value

a b c d e

key value

a b c d e

select d where 270 ≤ a ≤ 538

Select via Index

select d where 270 ≤ e ≤ 538

Select via Table Scan

How B-trees Are Used in Databases

Data maintained in rows and stored in B-trees.
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select d where 270 ≤ b ≤ 538

key value

a b c d e

key value

b a

key value

c a

Selecting via an index can be slow, if it is 
coupled with point queries.

How B-trees Are Used in Databases (Cont.)

main table index
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Covering index can speed up selects 
• Key contains all columns necessary to answer query. 
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key

a

value

b c d e

key value

bd a

key value

c a

select d where 270 ≤ b ≤ 538

But coverirock. 

How B-trees Are Used in Databases (Cont.)

main table covering index
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Insertion Pain Can Masquerade as Query Pain 

People often don’t use these indexes.
They use simplistic schema.

• Sequential inserts via autoincrement key

• Few indexes, few covering indexes

Then insertions are fast but queries are slow.

31
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Insertion Pain Can Masquerade as Query Pain 

People often don’t use these indexes.
They use simplistic schema.

• Sequential inserts via autoincrement key

• Few indexes, few covering indexes

Then insertions are fast but queries are slow.

Adding sophisticated indexes helps queries 
• B-trees cannot afford to maintain them. 

Fractal Trees can.
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How to Build a Fractal Tree and How it 
Performs
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Simplified (Cache-Oblivious) Fractal Tree

O((logN)/B) insert cost  & O(log2N) search cost 
• Sorted arrays of exponentially increasing size.

• Arrays are completely full or completely empty
(depends on the bit representation of # of elmts).

• Insert into the smallest array. 
Merge arrays to make room.

34
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Simplified (Cache-Oblivious) Fractal Tree (Cont.)
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Analysis of Simplified Fractal Tree

Insert Cost:
• cost to flush buffer of size X = O(X/B)

• cost per element to flush buffer = O(1/B)

• max # of times each element is flushed = log N

• insert cost = O((log N))/B) amortized memory transfers

Search Cost
• Binary search at each level

• log(N/B) + log(N/B) - 1 + log(N/B) - 2 + ... + 2 + 1 
 = O(log2(N/B))
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Idea of Faster Key Searches in Fractal Tree

O(log (N/B)) search cost 
• Some redundancy of elements between levels

• Arrays can be partially full 

• Horizontal and vertical pointers to redundant elements

• (Fractional Cascading)
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Why The Previous Data Structure is a Simplification

• Need concurrency-control mechanisms

• Need crash safety

• Need transactions, logging+recovery

• Need better search cost 

• Need to store variable-size elements 

• Need better amortization 

• Need to be good for random and sequential inserts

• Need to support multithreading. 

• Need compression

38



iiBench Insertion Benchmark

Fractal Trees scale with disk bandwidth not seek time. 
• In fact, now we are compute bound, so cannot yet take full advantage of more 

cores or disks. (This will change.) 
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iiBench Deletions
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Search/point query asymmetry when 
building Fractal-Tree Database
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Building TokuDB Storage Engine for MySQL

Engineering to do list
• Need concurrency-control mechanisms

• Need crash safety

• Need transactions, logging+recovery

• Need better search cost 

• Need to store variable-size elements 

• Need better amortization 

• Need to be good for random and sequential inserts

• Need to support multithreading. 

• Need compression
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Concurrency Control for Transactions

Transactions
• Sequence of durable operations.
• Happen atomically. 

Atomicity in TokuDB via pessimistic locking
• readers lock:  A and B can both read row x of database.
• writers lock:  if A writes to row x, B cannot read x until A 

completes.  

44
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B-tree implementation: maintain locks in leaves
• Insert row t
• Search for row u
• Search for row v and put a cursor 
• Increment cursor. Now cursor points to row w.

Doesn’t work for Fractal Trees:  maintaining locks 
involves implicit searches on writes.  

45

     v w  t

writer lock

   u

reader lock reader range lock

Concurrency Control for Transactions (cont)



Scaling Fractal Trees into the Future



iiBench on SSD

B-trees are slow on SSDs, probably b/c they waste bandwidth.   
• When inserting one row, a whole block (much larger) is written.
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B-tree Inserts Are Slow on SSDs

Inserting an element of size x into a B-tree dirties a 
leaf block of size B.

We can write keys of size x into a B-tree using at 
most a O(x/B) fraction of disk bandwidth.

Fractal trees do efficient inserts into SSDs because 
they transform random I/O into sequential I/O. 

48
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Disk Hardware Trends

Disk capacity will continue to grow quickly

but seek times will change slowly.

• Bandwidth scales as square root of capacity.
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Year Capacity Bandwidth

2008 2 TB 100MB/s

2012 4.5 TB 150MB/s

2017 67 TB 500MB/s

Source: http://blocksandfiles.com/article/4501



Fractal Trees Enable Compact Systems

B-trees require capacity, bandwidth, and 
random I/O

• B-tree based systems achieve large random I/O rates by 
using more spindles and lower capacity disks. 

Fractal Trees require only capacity & bandwidth
• Fractal Trees enable the use of high-capacity disks. 
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Fractal Trees Enable Big Disks  

B-trees require capacity, bandwidth, and seeks.

Fractal trees require only capacity and bandwidth.

Today, for a 50TB database,
• Fractal tree with 25 2TB disks gives 500K ins/s.
• B-tree with 25 2TB disks gives 2.5K ins/s.
• B-tree with 500 100GB disks gives 50K ins/s but costs $, racks, and 

power.

In 2017, for a 1500TB database:
• Fractal tree with 25 67TB disks gives 2500K ins/s.
• B-tree with 25 67TB disks gives 2.5K ins/s.

B-trees need spindles, and spindle density increases 
slowly.
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Using Big Disks Also Saves Energy

Power consumption of disks
• Enterprise 80 to 160 GB disk runs at 4W (idle power).

• Enterprise 1-2 TB disk runs at 8W (idle power).

Data centers/server farms use 80-160 GB disks
• Use many small-capacity disks, not large ones.

Using large disks may save factor >10 in 
Storage Costs

• Other considerations modify this factor
‣ e.g., CPUs necessary to drive disks, scale-out infrastructure, cooling, etc. 
‣ Metric: e.g., Watts/MB versus Inserts/Joule
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Power Management in High-Density Data 
Centers                                                 

Michael Bender 
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