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Abstract

Yannis Semertzidis came up with a sensational, and initially skeptically received,
finding that the EDM-transparent radiofrequency flipper, operated in the E

∗ = 0

mode, still generates the EDM signal in all magnetic storage ring. Subsequently,
Yuri Orlov has produced a theoretical explanation of Yannis’ finding for a model RF-
E(B) flipper uniformly distributed along a storage ring . In these notes I discuss
to more detail the physics of the RF Wien filter for a “pointlike” flipper much
shorter than the ring circumference. My principal point is that the duality between
the MDM-transparent RF-E flipper, and the EDM-transparent Wien filter, fully
extends to the effect of the flipper on the spin coherence time too.

1 Introduction

Recall that the non-vanishing EDM, ~d, gives rise to a precession of the spin of a particle
in an electric field. In the rest frame of a particle possessing also a magnetic moment ~µ,

d~S

dt∗
= µ~S × ~B∗ + d~S × ~E∗, (1)

where in terms of the lab frame fields

~E∗ = γ( ~E + ~β × ~B) ,

~B∗ = γ( ~B − ~β × ~E) . (2)

What we care about is a rotation of the spin of a stored particle with respect to its
momentum. At ~d = 0, the vertical component of the spin of stored particles, ~Sy ‖ ~B,
is conserved, while the in-plane, horizontal components rotates w.r.t. the momentum
around the y-axis at spin tune frequency

fS = GγfR , (3)

with the precession angle per turn

θS = 2πGγ , (4)

and pointing at angle
θ(k) = kθS (5)
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after k turns.
This remarkably model-independent relationship between the spin tune, fS, and ring,

fR, frequencies derives from the fact that the spin precesses in precisely the same magnetic
field which bends a particle momentum.

A complex motion in a ring makes the actual precession angle per kth turn, θk, different
from the ideal θS by a certain phase slip

θk = θS + δθk . (6)

A flipper phase θF (t) = 2πfF t is subject to its own phase slips because of the spread of
transit times. The central issue of these notes is whether RF flippers, as new elements in
a ring, might shorten the spin coherence time (SCT) and thus impede an accumulation
of the EDM signal.

A detailed treatment of the effect of a flipper on SCT is given in Lechrach-Lorenz-
Morse-Nikolaev-Rathmann (LLMNR). Specifically, they found a possibility of cancella-
tions of the spin tune and flipper phase slip effects in SCT at judiciously chosen energies.
Also, they suggested to eliminate the flipper phase slip effects making use of the flattop
excitation of the flipper.

In these notes I demonstrate that: (i) the equations for accumulation of the EDM
signal in all magnetic storage ring supplemented by either MDM transparent RF-E flipper
of EDM transparent RF Wien filter are identical, (ii) the interplay of the spin tune and
flipper phase slips in two setups is exactly the same. To cut it short, Yannis has discovered
an exact duality between the MDM transparent RF-E flipper and EDM transparent RF
Wien filter.

2 BMT equation with EDM

Hereafter we only consider pure radial electric field ~E ⊥ ~B ⊥ ~β, i.e., (~β · ~E) = (~β · ~B) = 0.
With allowance for nonvanishing EDM,

d = ηe/m ,

the BMT equations take the form (hereafter we only consider pure radial electric field ~E)

d~S

dt
= ~Ω × ~S ,

~Ω = −
e

m

{

G~B +

(

1

β2
−G− 1

)

~β × ~E + η
(

~E + ~β × ~B
)

}

. (7)

A scale for CP- and P-allowed MDMs is set by a nuclear magneton, µN . In order
to get a finite EDM one has to pay a price of ∼ 10−7 for the weak parity violation and
extra price of ∼ 10−3 for CP-violation, which sets a naive scale for a nucleon EDM at
dN = ηµ ∼ 10−10µN . Which also shows that the expected EDM caused spin rotations are
about ten orders in magnitude slower than the MDM caused ones, assuming E ∼ B.

In the ring proper ~E = 0. With the above indicated scale for η, interaction of EDM
with the permanent motional electric field ∝ ~β × ~B, gives an entirely negligible inwards
or outwards tilt of the stable spin axis in the ring. Still, the effect of the motional electric
field in a ring is tricky, as we shall see below.
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3 The spin rotation matrices

3.1 The ring

Here ~β × ~B = −βB~ex, and

~Ω = −
eB

mγ
{Gγ~ey − ηβγ~ex} =

= −fRθS(~ey − αR~ex), ,

αR =
ηβ

G
≪ 1 . (8)

In terms of the dimensionless τ = fRt the equations of motion take the form

dSx
dτ

= −θSSz (9)

dSz
dτ

= θSSx + αRθSSy (10)

dSy
dτ

= −αRθSSz (11)

A full derivation of the corresponding spin rotation matrix is found in Appendix, here
we site the result

~S(k + 1) = R̂(αR, θk)~S(k)

R̂(αR, θk) =

∣

∣

∣

∣

∣

∣

cos θk −αR(1 − cos θk) − sin θk
−αR(1 − cos θk) 1 −αR sin θk

sin θk αR sin θk cos θk

∣

∣

∣

∣

∣

∣

Interaction of the EDM with motional electric field mixes the vertical and horizontal
polarizations.

3.2 Perfect RF-E flipper

We define a perfect RF-E flipper such that the flipper is MDM transparent, i.e., ~Ω ‖ ~E,
i.e. when the motional magnetic field is canceled for by a magnetic field of a flipper:

G~B =

(

G+ 1 −
1

β2

)

~β × ~E (12)

Because we are interested in spin precession with respect to the beam momentum, this
condition is different from the naive ~B∗ = 0, it entails

~β × ~B = −
β2

G
·

(

G+ 1 −
1

β2

)

~E + ~β × ~B =
G+ 1

Gγ2
~E , (13)

and, consequently, a nonvanishing Lorentz force and an unwanted excitation of radial
betatron oscillations, for mor details see Appendix.
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The excitation function of the RF-E flipper, and of the tilt angle thereof, must be
either harmonic,

αk = αE cos(2πfF t),

or flattop,
α = αE · sign{cos(2πfF t)},

subject to the familiar resonance condition

fF = fS +KfR , (14)

K = 0,±1,±2, ... (15)

where

αE =
G+ 1

Gγ2
· d · tFEF , (16)

tF =
LF
β

(17)

and EF is an amplitude of the electric field. A length, LF , of the flipper is assumed to
be much shorter than the ring circumference, LR, and we shall treat flipper as a pointlike
element.

The corresponding spin rotation matrix equals

R̂F (αk) =

∣

∣

∣

∣

∣

∣

1 0 −0
0 cosαk − sinαk
0 sinαk cosαk

∣

∣

∣

∣

∣

∣

3.3 Perfect RF Wien filter

Here we demand a vanishing Lorentz force,

~E + ~β × ~B = 0

Simultaneously, the radial component of ~Ω would vanish entirely, i.e., such a Wien filter
is entirely transparent for the EDM of a particle!

The vertical component of ~Ω is nonvanishing, though. A simple algebra gives

ΩWF = −
e

m
·
G+ 1

γ2
B = −

e

m
·
G+ 1

γ2β
E(t) (18)

and the spin precession angle per kth pass

ψk = ΩWF tF = ψE cos(2πfF t) . (19)

Evidently, for a short flipper,
ψE ≪ θS .

The corresponding spin rotation matrix equals

R̂F (ψk) = R̂(0, ψk =

∣

∣

∣

∣

∣

∣

cosψk 0 − sinψk
o 1 0

sinψk 0 cosψk

∣

∣

∣

∣

∣

∣
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A central feature of ψk is that this precession angle comes from an element which does
not bend a particle, but precesses the spin. As such, it is extra to the classic spin tune
(3) and gives it a frequency modulation

θ(k) = θSfRt+
k

∑

0

ψk . (20)

4 Spin evolution equations

4.1 Perfect RF-E flipper

In the Lehrach-Lorenz-Morse-Nikolaev-Rathmann the effect of the motional electric field
in the ring on the accumulation of the EDM signal has been neglected and rightfully so.
A demonstration of this property sets also a stage for a discussion of the RF Wien filter.

Our convention is that the beam is injected in front of the flipper, so that one tern
starts with pass through a flipper and then a ring proper

R̂(k) = R̂(αR, θk)R̂F (αk) (21)

. A simple algebra gives

R̂(k) =

∣

∣

∣

∣

∣

∣

cos(θk) −[αR(1 − cos θk) − αk sin θk] − sin(θk)
−αR(1 − cos θk) 1 −αR sin(θk) − αk cos θk

sin(θk) +αR sin(θk) + αk cos θk cos(θk)

∣

∣

∣

∣

∣

∣

and, in terms of the spin components,

Sx(k + 1) = Sx(k) cos(θk) − Sy(k)[αR(1 − cos θk) − αk sin θk] − Sz(k) sin(θk) (22)

Sz(k + 1) = Sx(k) sin(θk) + Sy(k)[αR sin(θk) + αk cos θk] + Sz(k) cos(θk) (23)

Sy(k + 1) = −Sx(k)αR(1 − cos θk) + Sy(k) − Sz(0)[αR sin(θk) − αk cos θk] (24)

It is sufficient to treat the EDM effect to αE accuracy. Following the LLMNR routine,
we define

Sz(k) + iSy(k) = Y (k)e−iθ(k)

and find the evolution of the envelope, Y (k), of the horizontal polarization

Y (k + 1) = Y (k) + 2αRSy(k) sin(
1

2
θk)exp

−i(θ(k)− 1

2
θk]) + Sy(k)αE cos θF (k)e−iθ(k) . (25)

Because αR is constant, the corresponding oscillating contribution from the motional
electric field averages out, while

cos θF (k)e−iθ(k) =⇒ cos θF (k) · cos θ(k) =⇒
1

2
cos(θF (k) − θ(k))

and this equation takes precisely the form of the LLMNR equation

Y (k + 1) = Y (k) +
1

2
αESy(k) cos(θF (k) − θ(k)) (26)

which furnishes a formal proof that, in the setup with perfect RF-E flipper, the motional
electric filed of the ring does not affect the long time accumulation of the EDM signal.
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4.2 Perfect RF Wien filter

In this case R̂(k) = R̂(αR, θk)R̂(0, ψk) and

R̂(k) =

∣

∣

∣

∣

∣

∣

cos(θk + ψk) −αR(1 − cos θk) − sin(θk + ψk)
αR{cos(θk + ψk) − cosψk} 1 −αR(sin(θs + ψk) − sinψk)}

sin(θk + ψk) αR sin(θk) cos(θk + ψk)

∣

∣

∣

∣

∣

∣

which in terms of the spin components boils down to

Sx(k + 1) = Sx(k) cos(θk + ψk) − Sy(k)αR(1 − cos θk) − Sz(k) sin(θk + ψk) (27)

Sz(k + 1) = Sx(k) sin(θk + ψk) + Sy(k)αR sin(θk) + Sz(k) cos(θk + ψk) (28)

Sy(k + 1) = Sx(k)αR{cos(θk + ψk) − cosψk} + Sy(k) −

− Sz(k)αR(sin(θs + ψk) − sinψk)} (29)

The envelope of the horizontal spin, Y (k), defined with allowance for the Wien filter
contribution, ψ(k), to the spin precession,

Sz + iSx = Y (k)e−i[θ(k)+ψ(k)] . (30)

satisfies an equation

Y (k + 1) = Y (k) + 2αR sin
1

2
θSSy(k) exp{i[θ(k) + ψ(k) +

1

2
θk]} (31)

Now we make use of an explicit form

ψ(k) = ψE

k
∑

0

cos kθF = ψE ·
1

2 sin 1
2
θF

(

sin
1

2
θF + sin(θF (k) +

1

2
θF )

)

, (32)

expand in ψ(k) ≪ 1 and, following the LLMNR procedure, suppress all rapidly oscillating
terms

e+i[θ(k)+ψ(k)+ 1

2
θk] = (1 + iψ(k))e−i(θ(k)+

1

2
θS) =⇒

=⇒ −ψE
1

2 sin 1
2
θS

sin(θF (k) +
1

2
)θF ) sin(θ(k) +

1

2
θS) =⇒

=⇒ ψE
1

4 sin 1
2
θS

cos {θF (k) − θ(k)} (33)

which gives the final equation for the buildup of the horizontal spin

Y (k + 1) = Y (k) +
1

2
αRψESy(k) cos{θ(k) − θF (k)} . (34)

which is an exact counterpart of the LLMNR equation (26).
The same similarity holds also for the evolution of Syx(k) in the two setups.
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5 Duality between the ideal RF-E flipper and RF

Wien flipper

The Wien filter evolution equation (34) and the LLMNR evolution equation for RF-E
flipper (26) look very much the same. As a matter of fact, they are just identical.

For both setups a resonance condition is the same:

θF = θS + 2πK

fF = fS + fRK (35)

Recall that for a perfect RF-E flipper

αE =
G+ 1

Gγ2
·
ηe

m
·EF τF , (36)

and it is easy to check that
αRθE ≡ αE (37)

This accomplishes a proof that pure magnetic storage rings, supplemented with the MDM-
transparent perfect RF-E flipper, and the EDM-transparent RF Wien filter, do accumulate
the EDM signal at identical rates.

Finally, an interplay of the spin tune phase slip and of the flipper phase slip is identical
for both setups. Just recall that with allowance for the beam momentum spread the spin
precession angle acquires the phase slip

θ(k) = kθS + ∆(k) .

Exactly the same momentum spread gives the transit time slip, which translates into

θ(k) = kθF +
fF
fS

·
η

β2
· ∆(k) .

so that

θ(k) − θF (k) = k(θS − θF ) +

(

1 −
fF
fS

·
η

β2

)

∆(k)

and a condition for the decoherence-free spin rotation by a flipper

C = 1 −
fF
fS

·
η

β2
= 0

is precisely the same for both setups, which consequently would have identical SCT prop-
erties. The elimination of the flipper phase slip effects by going to the flattop excitation
of the flipper would work for both setups.

An educated guess is that whatever a strength of the vertical in-phase magnetic field
in the flipper , it can be viewed as a superposition of the perfect RF-E flipper and a
perfect RF Wien filter, so that at a fixed amplitude of the overall RF electric field, the
EDM signal would stay put. The point that the RF Wien filter does not excite unwanted
betatron oscillations, makes it a setup of the choice.

One caveat is that above duality is exact only at a nominal energy. Off the nominal
energy, the RF Wien filter is no longer the EDM transparent one, there will under- or
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over-compensated radial electric field ∝ δp/p. Because the spin precession and flipper
phase slips are also ∝ δp/p, the imperfection of the Wien flipper might interfere in a
nontrivial way with the phase slip corrections. Such corrections might prove different for
two setups, which requires further scrutiny.

As discussed in LLMNR, the effects of the RF-E EDM-flipper with pure radial electric
can readily be modeled experimentally by RF-B MDM-flipper with pure radial magnetic
field. However, there doesn’t seem to be any way of modeling the RF Wien filter rather
than the Wien filter itself.
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Appendix: Technicalities of derivations and miscel-

lanea

Cooling the RF-E-excited radial betatron oscillations

An obvious drawback of an ideal RF-E flipper is an oscillating Lorentz force which excites
the radial betatron oscillations. Because the excitation function of these betatron oscilla-
tions is exactly known, they can readily be cooled by a second flipper with a separation
corresponding to the horizontal betatron phase shift θB = ±π, run with the phase shift,

∆θF = −
Gγ

Qx

θB , (38)

to compensate for tame of flight from first to second flipper. Still arranging for such
a cancellations would demand special ring optics and involve a ring section with large
betatron oscillations.

Derivation of the ring spin rotation matrix

In terms of the dimensionless τ = fRt the equations of motion take the form

dSx
dτ

= −θSSz (39)

dSz
dτ

= θSSx + αRθSSy (40)

dSy
dτ

= −αRθSSz (41)

Their solution for a single pass of a ring proceeds as follows:
Upon introduction of a convenient complex Z = Sz + iSx the equations (39) and (40)

combine into
dZ

dτ
= −iθSZ + αRθSSy (42)

Z = Z(0)e−iθSτ

which describes the idle rotation of the horizontal spin:

Z(τ) = Z(0)e−iθSτ

Sx(τ) = Sx(0) cos(θSτ) − Sz(0) sin(θSτ) ,

Sx(τ) = Sx(0) sin(θSτ) + Sz(0) cos(θSτ) . (43)

while the vertical polarization is conserved, Sy =const.
To the next order in αR we search for a solution

Z = Y e−iθSτ

subject to a boundary condition Y (0) = Sz(0) + iSx(0), which yields an equation

dY

dτ
= αRθSSye

iθSτ (44)
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which must be solved with Sy taken to the lowest order approximation:

Y (τ) = Y (0) − iαRSy(0)(eiθSτ − 1)

Simple algebra gives the following result at τ = 1, i.e., the relevant spin rotation matrix
of the horizontal spin components per single turn, :

Sx(1) = Sx(0) cos θS − Sy(0)αR(1 − cos θS) − Sz(0) sin θs

Sz(1) = Sx(0) sin θS + Sy(0)αR sin θS + Sz(0) cos θs (45)

Next we solve (41) with the idle precession solution for Sz, and find the third row of
the spin rotation matrix per singe turn:

Sy(1) = Sy(0) − αRθS

∫ 1

0

dτSz(τ) =

= −Sx(0)αR(1 − cos θS) + Sy(0) − Sz(0)αR sin θs (46)

Rapidly oscillation driving force and slow rotation

In all cases our interest is EDM-driven slow rotation of the spin on the background of
rapid spin precession, which introduce functions oscillation with the spin tine frequency.
In all cases the envelope, Y (k), of the horizontal spin and the vertical spin Sy(k) are two
very slow variables of k, and we can go differential in k:

d

dk
~X(k) = R̂(θ(k), ψ(k)) ~X(k) (47)

where ~X = (~Y , Sy) . A formal solution is ~X(k) = Û(k) ~X(o), where Û(k) is the k-ordered

evolution operator (the R̂s take at different time do not commute),

Û(k) = Tk

{

exp

[
∫ k

0

dnR̂(θ(n), ψ(n))

]}

, (48)

which makes it obvious that all components in R̂(θ(n), ψ(n)), which oscillate rapidly
with the spin tune and flipper frequences, in the long run would oscillate with fixed
amplitude and wouldn’t generate any sustained spin rotation. The only relevant terms
in the exponent are those which depend on {θF (k) − θ(k)}, what vanishes under the
resonance condition.

Filtering out rapid oscillations from evolution of Sy with RF Wien

filter

A derivation of the evolution of Sy is a bit more tedious, as the effect of ψk in the overall
rotation matrix enters alongside the frequency modulation of the spin tune. With real
valued Y(k) we have

Sx(k) = Y (k) sin(θ(k) + ψ(k)) = Y (k) {sin θ(k) + ψ(k)) cos θ(k)} , (49)

Sz(k) = Y (k) cos(θ(k) + ψ(k)) = Y (k) {cos θ(k) − ψ(k) sin θ(k)} . (50)
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The relevant expansion for the elements of the rotation matrix is

cos(θk + ψk) − cosψk = −(1 − cos θs) − ψk cos θS , (51)

sin(θs + ψk) − sinψk = sin θs − ψk(1 − cos θs) (52)

Here it is convenient to represent ψ(k) as

ψ(k) =
1

2
ψE{1 + cos θF (k) + cot

1

2
θk sin θF (k)} (53)

and upon the elimination of rapidly oscillations terms,

ψ(k) cos θ(k) =⇒
1

2
ψE cos θ(k) cos θF (k) , (54)

ψ(k) sin θ(k) =⇒
1

2
ψE cot

1

2
θS sin θ(k) sin θF (k) , (55)

ψk sin θ(k) =⇒ 0 , (56)

ψk cos θ(k) =⇒ θE cos θ(k) cos θF (k) . (57)

we find the evolution equation for Sy will read

Sy(k + 1) = Sy(k) −
1

2
αRψESy(k) cos{θ(k) − θF (k)} . (58)

In view of the identity (36) it coincides with the LLMNR equation for perfect RF-E
flipper.

Injection of misaligned spin

So far we discussed the case of real valued Y (0) = Sz(0)+iSx(0). As explained in LLMNR,
in this case the EDM-driven rotation of the spin proceeds in the co-rotating plane with the
vertical y-axis as its rotation axis. The co-rotating plane, and the accumulated horizontal
spin thereof, point at a median angle

θM = θ(k) + ψ(k) . (59)

The co-rotating plane rotates with the non-uniform frequency.
As a matter of fact, a complex valued Y (k), i.e., the initial condition with Sx(0) is

well possible. The evolution term in the r.h.s. of equation (34) is real valued and the
imaginary component of Y (k) does not change with time. As explained in LLMNR, the
Sx(0) 6= 0 component of the misaligned spin stays put and orthogonal to the co-rotating
plane and does not participate in the EDM-caused rotation of the spin which couples Sy
and ReY .
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