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1. The basic idea. 

 The goal of this EDM Note is to show how we can cancel the second-order effects of 

betatron and synchrotron oscillations violating the main condition of our deuteron  EDM 

experiment , 

               ωa =
e
m

a BV − a +
m
p
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= 0 ,   ideal case.                            (1.1) 

The basic idea is the following. Consider, for example, the violation of (1.1) by horizontal 

betatron oscillations, x(s), s is the longitudinal coordinate,  

                 xβ (s) = Ax β x(s) cos ψ x(s) + δx( ).                                          (1.2) 

(The subscript β  distinguishes free betatron oscillations from closed orbits depending on ∆p/ p . 

We will omit this subscript when it will not lead to the reader's confusion.) In (1.2), I use the 

Handbook [1] expression for x(s), p.49, section 2.1, formula (2), in which the dimension of Ax  is 

m1/ 2 , not m . Any terms linear in x  in (1.1) are averaged  to zero over time, but the quadratic are 

not. As a result, we have there the horizontal pitch effects proportional to x2  and 

ϑ x
2 ≡ dx / ds( )2 , summarized as  

                       (∆ωa )betatron,
horizont .

≡ ∆ωa1 = a1Ax
2 .                                               (1.3) 

The factor a1 depends on the lattice structure. (1.3) is an incoherent, individual perturbation of 

ωa , different for particles having different amplitudes Ax . Therefore, it leads to a steady loss of 

the beam polarization P in time. Our goal is, of course, to prolong the coherence time as much as 

possible. So if we want to keep our beam polarized up to, say, 1 minute, while permitting the 
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betatron amplitudes xmax ~2.5cm, then, as we can see from formula (5.20) below, we need to 

cancel effect (1.3) with accuracy ~ 0.1% . The basic idea analyzed in this Note is to cancel this 

and other quadratic perturbations with the help of magnetic sextupoles properly distributed along 

a properly designed EDM ring.  

 Sextupole #k produces the nonlinear—quadratic—field  

                  Bk ≡ ′ ′ B k (x2 − y2 )/ 2, ′ ′ B ≡ ∂ 2 B /∂x2                                         (1.4)  

 (x, y  are horizontal and vertical coordinates; numbering marks both sextupoles and their places 

in the ring.) This field shifts the betatron equilibrium orbit either inward or outward, changing 

the balance of fields in (1.1). (On the shift of equilibrium in the simple case of nonlinear 

oscillators with constant coefficients, see Mechanics, [2], section 28.) This is the main reason for 

using sextupoles. We can arrange a distribution of the sextupoles along the orbit such that effect 

(1.3) will be canceled.  

 It is more or less obvious in advance that, using the same distribution, we can cancel the 

vertical pitch effect, 
                       ∆ωa( )betatron,

vertical
≡ ∆ωa2 = a2 Ay

2 .                                              (1.5) 

( Ay  is defined as in (1.2) with x → y ). This is possible because, as already noted, the field (1.4) 

depends on both x and y quadratic deviations. The cancellation of (1.3) and (1.5) together is quite 

similar to the well-known cancellation of both horizontal and vertical chromaticities. 

 Less obvious, we can also cancel quadratic off-momentum effects violating (1.1), 
                       ∆ωa( )p ≡ ∆ωa3 = a3 ∆p / p( )2 ,                                            (1.6) 

 by the same distribution of the sextupoles. We will see that it is certainly impossible in the 

simple FODO lattice, but it seems possible in a ring with big straight sections, in which we can 

manipulate the beam's closed orbits. It is important to note that violation (1.6), not so dangerous 

as (1.3), (1.5), can be controlled rather easily by other means.  The effects (1.3), (1.5), and (1.6)  

are the only  types of quadratic perturbations violating condition (1.1). 

 The quadratic off-momentum effect (1.6) needs clarification. There exists, of course, not 

only a quadratic, but a linear effect violating (1.1), (∆ωa ) ∝ ∆p / p ≠ 0 . However, in the linear 
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approximation, it is canceled on the average (meaning average in time) by  introducing 

synchrotron oscillations of the particle momenta with the help of the corresponding RF cavities, 

∆p/ p = (∆p / p)0 cos(ωs t + φ).  However, synchrotron oscillations are not exactly linear. There 

are various quadratic terms in the synchrotron equations, different for different particles, and 

these terms shift the equilibrium momenta of these particles. As a result, the main off-momentum 

effect violating (1.1) is not zero, and is not linear:  

               ∆p/ p = ∆p / p +(∆p / p)0 cos(ωst + φ) ,                                   (1.7) 

where ∆p / p  is shifted from zero value by second-order effects proportional to Ax
2 , Ay

2 , and  

(∆p / p)2 . Such a shift influences all three factors a1, a2 , and a3 , so we can use it in our design 

to control (1.1) by manipulating synchrotron equilibrium, i.e., ∆p / p . The principal possibility  

of controlling all three factors by sextupoles arises from the fact that the full horizontal    

oscillations x(s) in (1.4) contain both betatron and synchrotron oscillations, 

                       x(s) = xβ(s) + D(p,s)∆p / p ,                                              (1.8) 

xβ (s)  from (1.2). (About function D(p,s), see [1], p. 50.)  Therefore, on the average, 

                       x2 = xβ
2 + D2 ∆p / p( )2 .                                              (1.9)                          

 (The uncounted linear term, 2Dxβ (p / p)  plays an important role in the problem of the free 

betatron oscillations' chromaticity. But it is not our main concern here.) Thus, on the average, 

field (1.4) of sextupole #k is 
             Bk = ′ ′ B k xβ

2

k
− yβ

2

k
+ Dk

2 ∆p / p( )2[ ].                                 (1.10) 

  In this Note I show that, with the help of the sextupoles, the proposed accuracy of ωa = 0  

is possible in principle. But the calculations for the final design need much more work. For 

example, I have used here a thin lens approximation, which is not exactly realistic. I have done so 

because such an approximation is very transparent, almost all effects can be represented 

analytically, and many preparatory formulas can be verified by [1]. A number of higher-order 

effects which are needed in order to know a1, a2 , and a3  more precisely—with the accuracy 10−3  

—are not taken into account here. Also, in order not to complicate the main subject of this Note, 

I have not included the acceleration of particles by the radial electric field into the calculations.  
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  2. Main elements of the lattice of a deuteron EDM ring. 

 The size of such a  ring, Fig. 1, is more or less defined by an assumed magnitude of the 

radial electric field, ER , and the desirable momentum of deuterons, p. Certainly, we need p>0.6 

GeV/c. I have assumed the electric field at the equilibrium orbit, E=4 MV/m=1.3333×10−2 T, 

and the equilibrium deuteron momentum, p=0.788 GeV/c. This gives me the equilibrium orbit 

radius inside the BE sections, R=15 m, and the magnetic field there, B=0.2095 T. "BE" means 

the combination of the vertical magnetic field, BV , and the radial electric field, ER . At the ideal 

equilibrium orbit, condition (1.1) holds, where a=-0.143, m=1.8756 GeV. The related formulas I 

have used are 

                                 p = 0.3 B − E / β( )R,                                                 (2.1) 

                              B =
1
a

a +
m
p
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                      E =
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,                                           (2.4) 

β = v / c =1/ 1 + m / p( )2 , p in GeV/c, B and E in T , R in meters.  

 Thus,  

             p=0.788, E=1.3333×10-2 T, R=15,  B=0.2095, β = 0.3873 , β 2 = 0.15, m / p( )2 = 5.6654,                     

 γ 2 = 1+ p/ m( )2 =1.1765, γ = 1.0847, fc = 0.9306 MHz,
1

2π
e
m

a Βv =144.34 kHz  (2.5)    

 Any design of a deuteron EDM ring must obey the following physical conditions: 

 I. The ideal ring must be symmetric with respect to the clockwise (CW) and 

counterclockwise (CCW) movements of the deuterons. During the CCW runs, the sign of the 

magnetic field must be changed not only in the magnetic dipoles, but in all magnetic elements of 

the lattice shown in Figs. 2, 3. (In particular, a ring version designed for muons in [3], where the 

magnetic lens currents must be not changed, is not acceptable in the much more precise deuteron 
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EDM experiment.) The electric field is not changed. Thus, in the "backward CCW movie," the 

sequence of the ring elements met by the deuterons must be exactly the same as in the "forward 

CW movie."  This is the main condition for cancellation of all three main spin perturbations 

imitating the deuteron EDM:  (a) EV ; (b) Alternating along the orbit BL(s)  and ∆ωa (s) 

perturbations. (c) Similarly alternating BR (s) and ∆ωa (s) perturbations. (b) and (c) are second-

order effects caused by sequences of non-commutative perturbations of the spin, as was 

explained in [4]. It has been formally proved [4] that the CW-CCW cancellation method is 

applicable to them. (For historical reasons, perturbations (b) and (c) are called "twist" and 

"saucer.") 

 Probably, the best lattice from the CW-CCW symmetry point of view would be a  circular 

FODO ring having a single period, for example,  ...FO1F(BE)DO2 D(BE )FO1F... , where F and  D 

are focusing and defocusing lenses, O1  and O2  are free intervals. (About FODO in general, see 

Handbook [1], p.60., section 2.2.3.) However, another condition—the cancellation of the second 

order effects in ∆ωa , the subject of this Note—needs more parameters than such a lattice 

possesses, see IV below. 

 II. The vertical magnetic field BV  and the radial electric field ER  cannot be separated in 

space [5]. That is, the (g-2)-cancellation condition (1.1) must be fulfilled as much as possible 

locally, at every azimuth s, ωa(s) ≡ 0 , and not only on the average, ωa (s) = 0  [5]. Indeed, if our 

lattice were an alternating sequence of the electric and magnetic fields, like 

... BV ... ER ... BV ... ER ..., with ωa = 0  only on the average, then we would artificially create huge 

high modes of the ∆ωa  -perturbation along the orbit, ∆ωa (s) ~ ωa0 cos(kωCs / v)   

(ωa0 = aeBV / mc , k is the mode number), though (1.1) would not be violated on the average. If 

such an artificially created high mode of ∆ωa (s) were combined with an accidental perturbation 

of the magnetic field—either longitudinal field ∆B = BL(s) or radial field ∆B =  BR (s)—of the 

same high mode along the orbit but a different phase, then we would get a very big "twist" or 

"saucer."  Obviously, similar perturbations will be much-much smaller in the ring with local 

cancellation of the g-2 rotations.   
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 III. There must be a synchrotron stability of the deuteron momenta, p, that is, the 

corresponding RF cavities must be installed in the ring. Otherwise, any reasonable initial spread 

of the particle momenta, ∆p,   around the ideal momentum would violate condition (1.1). For 

example, the beam with ∆p / p( ) ~ 10−3  is depolarized after 5-10 ms. (We are talking about 

depolarization in the horizontal plane.) The reason is that in a strong focusing system, which is 

the most desirable choice for a deuteron EDM ring, the average radius of the orbit only slightly 

depends on momentum p in formula (2.1): ∆R(s) / R(s) << ∆p / p . The term E / β << B  is small 

in (2.1). Therefore, according to (2.1), no matter how we construct our strong focusing lattice, we 

will have violation ∆BV / BV ~ +∆p/ p  of the condition (1.1) by the off-momentum magnetic 

field. Simultaneously, the main factor before the electric field in (1.1), −β(m / p)2  is also 

changed, −∆(βm2 p−2 )/(βm2 p−2 ) ~ +∆p / p . Thus, these two linear ∆p/ p   effects are 

summarized, and not mutually canceled in (1.1), and only synchrotron stabilization can solve the 

problem. In the presence of synchrotron stability, in the linear approximation, different momenta 

of different deuterons, p = p0 + ∆p , oscillate around the same p0 .  

 IV. The cancellation of the g-2 rotations proportional to  linear deviation ∆p/ p   is not 

sufficient for our accuracy. For example, the horizontal and vertical  pitch effects analyzed in this 

Note will depolarize the beam in the course of some several hundred ms, instead of the designed 

10 or more seconds. This will limit our ability to analyze and correct the major systematic errors. 

We ultimately need to cancel quadratic betatron effects (1.3) and (1.5). This can be easily done 

even in the simplest FODO ring. But simultaneous cancellation of (1.6) cannot be made in an 

arbitrary  ring. (Without knowing this, I have designed all my previous versions of the deuteron 

EDM ring as similar to such FODO rings.)  For this reason, we need big straight sections, as in 

Fig. 1—which would be useful also for other purposes. Big straight sections are the identity 

matrix sections. That is, a particle with horizontal and vertical coordinates (x, ′ x ; y, ′ y ) at the 

entrance of the section is transported in such a way that  its coordinates (x, ′ x ; y, ′ y ) are exactly 

the same at the exit of this section.  
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3. The relevant lattice formulas and parameters. 

 First of all, we need to specify the B and E fields in the BE section. If the electric plates 

are infinite straight vertical plates, as we assume here, then the ideal electric field  

                         E = ER(x) =
E0 R0

R
=

E0

1+ x / R0( ).                                     (3.1) 

It is not unreasonable to design the ideal magnetic field of the BE sections so that it has similar 

behavior in the horizontal plane: 

                    B(y = 0) = BV (x) =
B0 R0

R
=

B0

1 + x / R0( ).                                (3.2)  

For y ≠ 0 ,  keeping only terms linear and quadratic in y, 

                    BV =
B0 R0

R
1 −

1
2

y
R

 
 

 
 

2 

 
 

 

 
 ,   inside BE,                       (3.3) 

                            BR = −
B0 R0

R2 y ,   inside BE.                                          (3.4) 

This choice is rather arbitrary and needs to be compared in future with alternative choices. 

Different choices produce slightly different factors a1, a2, a3  in formulas (1.3), (1.5), (1.6). The 

advantage of our choice of BE fields is that for particles with the ideal momentum, condition  

ωa = 0  holds for any x  (but not for any dx/ds) in the central plane of the BE.  The magnetic field 

index for field  ((3.3)-(3.4), n = −R(∂B / ∂R)/ B = 1, equals 1 for every x  in the central plane. If 

the particle is moving in the central plane, y=0, and in parallel to the ideal orbit, x=constant, then 

in all approximations there are no focusing forces either from E or from B fields because the path 

length, dl = ds 1+ x / R( ), is going up while the fields are going down with x as 1/ 1 + x / R( ) , see 

Fig. 4a. In this case, the fields (3.1), (3.2), averaged over the particle trajectory inside BE's, 

always equal E0  and B0  independently of x, so there are no violations of condition (1.1) either.   

 However, perturbed trajectories are not parallel to the central axis. Correspondingly, there 

exist  effects violating (1.1) and proportional to ϑ x
2 ≡ dx / ds( )2 . We will take them into account. 

(We will neglect only the average effects of acceleration in the horizontal ER -field, which are 

also proportional to ϑ x
2 .) Nonzero dx / ds( )2  and dy / ds( )2  play the major role in the generalized 

horizontal and vertical pitch effects considered in the following sections. In particular, the 

lengthening of the trajectories due to x and y oscillations, see Fig. 4b 
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   ∆L = L − L0 = ds 1 + x / R( )2 + dx / ds( )2 + dy / ds( )2

0

L0

∫ − L0 ,                (3.5) 

is the biggest contribution to ai 's. From (3.5), in the second-order approximation, 

                          
∆L
L

=
x
R

+
1
2

ϑ x
2 +

1
2

ϑ y
2 .                                         (3.6) 

(3.6) is a purely geometrical effect. With respect to betatron oscillations, ϑ x
2  is proportional to 

Ax
2 , and ϑ y

2  to Ay
2 . In the synchrotron region, ϑ x

2 = ( ′ D (s))2 (∆p / p)2 . Due to various nonlinear 

terms in the betatron equations, x / R  itself depends on second-order effects, 

          
x
R

= (α0 + α1
∆p
p

)
∆p
p

+ α 2
∆p
p

 
  

 
  

2

+ qx Ax
2 + qyAy

2 ,                        (3.7) 

The meaning of α 0 , α1,  α2 ,  qx ,  qy  will be clear later in this Note. (3.7) is a purely betatron 

dynamics effect. In (3.6) and (3.7),  means averaging in time high frequency betatron 

oscillations, while ∆p/ p  is considered approximately constant in time. Then (3.6), (3.7) go into 

the equations for slow synchrotron oscillations. In the next section we will show that ∆p / p , 

being averaged over synchrotron oscillations, is shifted by all kinds of quadratic terms from its 

linear equilibrium ∆p/ p = 0, so  

   
 
                   

∆p
p

∝ individual quadratic terms.                        

(3.8) 

          The following are our lattice parameters accompanied by some useful formulas in the thin 

lens approximation. A list of some basic parameters is given also in (2.5); the basic ring shape 

follows from conditions I-IV of the previous section, and the BE fields are given in (3.3), (3.4). 

We first describe the semicircles,  see Fig. 2, and then the straight sections, Fig. 3.   

Semicircles 

Length of two semicircles, LBE = 2NlBE = Nl = 2πR = 94.2478m .                                            (3.9) 

Full length of the orbit, L= LBE + 2LI = 124.89m; LI  is the length of a straight section.          

(3.10) 

Ratio LBE / L = 0.7547 .                                                                                                            (3.11) 

Number of periods (cells),  N=24.  (N/2= 12 in every semicircle).                                         (3.12)  
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Length of a half-cell, lBE ≡ LBE / 48 =1.9635m  (The full cell length, l = 2lBE = 3.93m ).         

(3.13)      

Focal length of a half-lens, f =1.63 lBE = 3.2m ,   
1
f

=
′ B llens / 2
BR

,  ′ B ≡ ∂BV / ∂x .                    (3.14) 

Horizontal tune (without big straight sections), ν x =
N

2π
arccos 1− 2

lBE

f
 
  

 
  

2 

 
 
 

 

 
 
 

= 5.04.              (3.15) 

Together with straight sections,  ν x + 2 =7.04:  

 Note: We are not concerned that this tune is too close to integer 7, because this is not a 

final design  of the ring. 

Vertical tune (without str. secs.), ν y =5.1629,   cos
2πνy

N
= cos

2lBE

R
− 2

Rsin(lBE / R)
f

 
  

 
  

2

.     (3.16) 

Together with straight sections,  ν y + 2=7.1629. 

 
β x

+ = f
1 +lBE / f
1 −lBE / f

= 6.5382m.                                                                                               (3.17) 

.
β x

− = f
1− lBE / f
1+ lBE / f

= 1.5662m .                                                                                               (3.18)  

β x
+ / βx

− = (1 + lBE / f )/(1 − lBE / f ) = 4.17 

γ x =
1 +α x

2 (s)
βx(s)

=
2

f 1 − (lBE / f )2
= 0.7915m−1.                                                                       (3.19) 

 Note: α ,  β ,  γ  here are the Courant-Snyder functions. In our design, γ x  is constant 

between (and only between) lenses because  x is not focusing there, see Edwards and Syphers [5]. 

p.97, and Handbook [1], pp. 49-50 and under Betatron function.   

Horizontal phase advance per cell,  ∆ψ x =1.321: 

Phase advance for  a + ↔ −  transition,  ∆ψ x + − = ∆ψ x / 2 = arcsin(lBE / f ) = 0.6605 .            (3.20) 

Dx
+ =

f 2

R
1 +

lBE

2 f
 
  

 
  

= 0.8921m.                                                                                                 (3.21)  

Dx
− =

f 2

R
1 −

lBE

2 f
 
  

 
  

= 0.4733m .                                                                                                 (3.22) 

Dx
+ / Dx

−( )2
=

1 + lBE / f + (lBE / 2 f )2

1 − lBE / f + (lBE / 2 f )2 = 3.55 

 We see that there is only ±8% difference between D+ / D−( )2
and β+ / β− . Dx (s) is 

defined here by the linear part of the x-dependence on ∆p/ p; x = Dx∆p / p.  
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  .                                       a0 ≡ Dx s( ) / R
LBE

L =
1

R2 f 2 − lBE
2 /12( )LBE

L = 0.03327                 (3.23) 

 Note: In (3.23),   means the average over two semicircles only. 

 In the following numbers for vertical oscillations, + means, as usual, the  places where x-

focusing quads are placed, and −  means places where x-defocusing quads are placed. With these 

notations, we must remember that β y
+ ≈ βx

−  and β y
− ≈ βx

+ . The formulas used above for x-

oscillations are not precisely valid for y-oscillations, because n = −R ′ B / B = 1 in the BE's. 

β y
+ =1.5229m.                                                                                                                           (3.24) 

β y
− =6.4298m.                                                                                                                           (3.25) 

γ y = 0.7944 

Vertical phase advance per cell,  ∆ψ y =1.3516 

Vertical phase advance for + → − transition,  ∆ψ y + −=∆ψ y / 2 = 0.6758.                         

(3.27) 

Identity matrix straight sections 

Number of straight section NI( )=2  

Length of one straight section,  LI = 15.32m  

Number of free intervals per LI ,  Ns / 2 = 8  

Length of a half-cell, lI ≡ LI / 8 = 1.915m  

Focal length of a half-lens, fI = lI 2 = 2.7082 m 

Phase advance per one interval lI , ∆ψ =π/ 4 

β xI
+ = β x

+ = 6.5382m . 

β x
− = 1.1218m 

γ xI =
2

fI 1− (lI / fI )
2

= 1.0444m−1                                                                                            (3.32)                         

Dispersion function in the straight section: 

DI (0) = 0.8921m;     DI (lI ) = 0.2929DI (0);       DI (2lI ) = 0 ;   DI (3lI ) = −0.2929DI (0) ; 

DI (4lI ) = −DI (0);    DI (5lI ) = −0.2929DI (0);   DI (6lI ) = 0 ;   DI (7lI ) = 0.2929DI (0) ; 

 DI (8lI ) = DI (0)                                                                                                                       (3.33) 
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  β yI
± = β xI

m  

γ yI = γ xI  

   4. Calculation and correction of a3 ∆p / p( )2 . 

 As noted, the quadratic perturbations (1.3), (1.5), (1.6), 

         ∆ωa = ∆ωa1 + ∆ωa2 + ∆ωa3 ≡ a1Ax
2 + a2 Ay

2 + a3 ∆p / p( )2 ,                           (4.1) 

 cannot be separated from the perturbation linear in ∆p/ p   when sychrotron stabilization holds. 

What the synchrotron oscillations actually stabilize is the average (in time) period of particle 

revolutions, T=L/v. If the relevant ring parameters are constant in time, then on the average (in 

time) all individual T's are the same.  This means, 

   
∆(L / v)
L0 / v0

=
∆L
L0

−
∆v
v0

−
∆L
L0

∆v
v0

+
∆v
v0

 
  

 
  

2

+ ... = 0.                            (4.2) 

This is the only feature of synchrotron oscillations needed for our purpose. 

 (From now on, we will omit indices "0" if this will not lead to ambiguities.) In this 

section we consider the case xβ = yβ ≡ 0. In such a case, we have (ignoring cubic and higher-

order effects): 

   
∆L
L

= α 0
∆p
p

+ (α 1 +α 2 + α ′ D )
∆p
p

 
  

 
  

2

 ,                                               (4.3) 

   
∆v
v

=
1

γ 2
∆p
p

−
3
2

β2

γ 2
∆p
p

 
  

 
  

2

,                                                       (4.4) 

   
∆L
L

∆v
v

=
α0

γ 2
∆p
p

 
  

 
  

2

.                                                                       (4.5) 

The physical difference between second-order compaction factors α1 , α 2  and α ′ D  will be 

explained shortly. The usual compaction factor α 0  is given in (3.23) above. We see that in order 

to satisfy (4.2),  the individual equilibrium of ∆p/ p   is shifted, 

   
∆p
p

=
1/ γ 4 + 3β2 / 2γ 2 −α 0 / γ 2 + α ′ D +α 1 +α2

1/ γ2 −α 0

∆p
p

 
  

 
  

2

.              (4.6) 

(There are more quadratic terms on the right side of (4.6) in the full expression for ∆p / p , if we 

take into account free betatron oscillations. These terms can be considered independently of 

(∆p / p)2 , as will be done in the following section.) The only factor here that can be changed by 
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our sextupoles (in order to cancel the off-momentum violation of (1.1)) is α 2 , and we will show 

how it can be used.  

 We need to calculate all ∆p/ p  and ∆p / p( )2  terms violating (1.1). First of all, there exists 

a factor before ER  equal to  −(e / m)[ a + m2 / p2 ]β  which directly depends on momentum. This 

coefficient produces 

             ∆ωa( )coeff =
e
m

a B
1

γ 2
2E
a βB

−1
 
  

 
  

∆p
p

−
E

a βγ 4 B
+

3β2

2γ 2
2E

a βB
−1

 
  

 
  

 

 
 
 

 

 
 
 

∆p
p

 
  

 
  

2 
 
 

  

 
 
 

  
LBE

L
,     (4.7) 

and we know from (4.6) that the term (∆p / p) here contains a non-oscillating part proportional to 

(∆p / p)2 . Below we will add to (4.7) more terms linear and quadratic in ∆p/ p   describing the 

field perturbations met by moving particles, and will investigate the meaning of ∆p / p . (The 

terms not connected to ∆p/ p  are considered in the next section.)  

 The next step is to analyze all effects following from the perturbations of the closed orbit 

due to ∆p/ p , ∆p / p( )2 : 

                   x(s) = xβ(s) + ˜ D (p,s)
∆p
p

+ d(s)
∆p
p

 
  

 
  

2

.                                 (4.8) 

Here, by definition,  d(s) depends only on sextupole fields, so α 2 = d / R . (But we can calculate 

α 2  without actual calculation of d(s).)  Our dispersion function, ˜ D ( p, s), is different from the 

usual D(s) ,which does not depend on p . In fact, ˜ D ( p, s)  is the (slightly approximate) solution of 

equation (17) in the Handbook [1] (on p.50), which does not take into account sextupoles. That 

equation is 

           Eq. (17) of [1]: ′ ′ D (p,s) +
1
R0

2 +
∂B / ∂x

BR0

 
  

 
  

p0

p
D( p, s) =

1
R0

p0

p
+

D( p,s)
R0

2
∆p
p

.     (4.9) 

The equation for the usual D(s) , which leads to our formulas (3.20)-(3.23), (3.33), 

 corresponds to p = p0  and ∆p = 0  in (4.9). ˜ D ( p, s) is therefore the solution of (4.9), taking into 

account the next approximation in ∆p/ p . The last term in (4.9) is already proportional to ∆p/ p; 

so, with a very small error, we can substitute α 0 ≡ D(s)/ R0  for D( p, s)/ R0 .  Now, remember 

that in our BE sections,  

                
1
R0

2 +
∂B / ∂x

BR0

= 0 ,   
1
R0

≠ 0,   BE sections.                             (4.10) 
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In lenses and free intervals, R = ∞ , 1/ R = 0. Comparing equation (4.9) with its limit  

p → p0 ,  ∆p → 0 , we see that we can get  ˜ D ( p, s) from D(s)  simply by substituting  

                 
1
f

→
1
f

1 −
∆p
p

 
  

 
  

,   
1
R

→
1
R

1 − 1 −α 0( )∆p
p

 
 
 

 
 
 ;   D(s) → ˜ D (p,s).               (4.11) 

From this, after some algebra, and neglecting α 0 <<1 in (4.11), we get 

          
˜ D ( p, s)

R0

= α 0 + α1
∆p
p

,    α1 = (LBE / L)lBE
2 / 6R2 = 0.0022 .                  (4.12) 

 We now need to take into account the sextupole fields, see eqs. (1.4), (1.10) above. The 

shortest way to calculate α 2  is to use formula (2) in [1], p. 263: If a particle passing a very short 

area ∆s = lsi  of the magnetic perturbation, ∆Bi , gets the same kick (angle deflection) θi  during 

every revolution, then, on the average, its closed orbit length is changed as 

                                     ∆L =θiD(si ).                                                     (4.13) 

(This formula is consistent also with the Hamiltonian (44) represented in [1], p. 70.) The kick  

produced by a perturbation ∆B equals θ = −∆Bls / BR  ; in the case of a sextupole, 

∆B = ( ′ ′ B D2ls / 2BR)(∆p / p)2 ; therefore,  

               α 2 = −
′ ′ B iD

3(si)lsi

2BRL∑ ,     ′ ′ B ≡ ∂2 B /∂x2 .                               (4.14) 

 In formula (4.6), we also haveα ′ D .This factor has no connection with (4.8). It  is simply 

the factor of the lengthening of the particle trajectory due to ′ x (s) = ′ D (s)∆p / p , see formula 

(3.6), above: 

                 (∆L / L) ′ D =
1
2

(dD(s) / ds)2 ∆p / p( )2 .                                   (4.15) 

In a BE section, during the transition from + to - quads, ′ D (s) = −D+ / f + s / R  . (See [1], p.60, 

formula (6) there, with sin(µ / 2) = lBE / f . See also our formula (3.21)). This gives  

     
∆L
L

 
 

 
 

′ D ,BE
=

1
4

f
R

 
 

 
 

2

+
7
6

lBE

R
 
 

 
 

2 

 
 
 

 

 
 
 

LBE

L
∆p
p

 
  

 
  

2

= 0.0164
LBE

L
∆p
p

 
  

 
  

2

.             (4.16) 

In a straight section, between lenses #k and #(k+1), ′ D = Dk+1 − Dk( )/ ls , take numbers from 

(3.33) and around it. This gives 

                           
∆L
L

 
 

 
 

′ D , I
= 0.508

ls

L
∆p
p

 
  

 
  

2

.                                          (4.17) 

With LBE / L = 0.7547 , lI / L =1.5333 ×10−2  , 
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                                      α ′ D = 0.0202.                                                    (4.18)  

 Now let us estimate the contribution of D(s)∆p / p  to ∆ωa  through the direct influence of 

the average magnetic and electric fields. As usual, we assume that without perturbations (1.3), 

(1.5), (1.6), condition (1.1) is satisfied. With our choice of fields inside the BE sections, (3.1)-

(3.4), condition (1.1) does not depend, inside BE's, on a particle horizontal coordinate, in this 

case on x = D(s)∆p / p +quadratic term. But it depends on the particle velocity, in this case on 

ϑ p =  dx / ds = (dD / ds) ∆p / p( )  + (non-essential in this case) (∆p / p)2  terms. First, there is the 

horizontal acceleration, which we do not take into account here. Second, the perturbed velocity is 

not exactly perpendicular to   
r 
E , so there is a factor cos(dx / ds) = 1 − 0.5(dx / ds)2 . A similar effect 

in horizontal betatron oscillations is explained in detail in the next section. This gives 

   (∆ωa ) ′ D E = +
e
m

a +
m
p

 
  

 
  

2 

 
 
 

 

 
 
 
βER ⋅

1
2

′ D ( )2

BE
(∆p / p)2 ⋅

LBE

L
            (4.19) 

We already know, see (4.13), (4.14), that  

                 
1
2

( ′ D )2
BE

=
1
4

f
R
 
 

 
 

2

+
7
6

lBE

R
 
 

 
 

2 

 
 
 

 

 
 
 

= 0.0164.                        (4.20) 

Thus,  

                  (∆ωa ) ′ D E =
e
m

a BV ⋅0.0164
LBE

L
∆p
p

 
  

 
  

2

 .                          (4.21) 

  As for the magnetic field effects, both linear and quadratic in ∆p/ p , that violate (1.1), 

they can be produced only by quadrupoles and sextupoles. Let us first calculate the perturbed B-

fields met by a particle passing the quadrupoles. Inside the two semicircles, in our lattice of equal 

alternating gradients  

             
∆B
BV

 
  

 
  p,quad

=
1
BV

∂B
∂x

 
 

 
 

+ llens

2lBE

˜ D + − ˜ D −( )LBE

L
∆p
p

 ,                    (4.22) 

where ∆BV  refers to quads, while BV  to the ideal field inside BE's. lBE  is the half-cell length, llens  

is the full-quad length. This gives 

                   
∆BV

BV

 
  

 
  

p,quad

=
1
BV

∂B
∂x
 
 

 
 

+ llens f
2R

LBE

L
∆p
p

.                             (4.23) 

Finally, using (4.11) and the designed definition of the focal length, see (3.14), we get 
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∆BV

BV

 
  

 
  

p,quad

=
LBE

L
1 +α 0

∆p
p

 
  

 
  

∆p
p

,                                     (4.24) 

 

             ∆ωa( )p,quad =
e
m

aB
LBE

L
1+ α 0

∆p
p

 
  

 
  

∆p
p

.                                   (4.25) 

 In the frame of our assumptions, there are no other contributions to violations of (1.1) by 

off-momentum terms. Indeed, straight sections' quadrupoles cannot produce any effect, because 

the D-function is oscillating there. And it can be proved (and confirmed by numerical 

calculations) that sextupoles do not change the average field. The proof is the following. 

 Taking into account only first- and second-order perturbations, the equation of motion 

inside the BE's is 

             ′ ′ x =
1
R0

p0

p
∆p
p

+
1
R0

x
R0

∆p
p

,     inside BE.                                 (4.26) 

In the same approximation, the equation for the ring parts outside the BE's can be written as 

                   ′ ′ x +
BV (s)
BV R0

p0

p
= 0,      outside BE.                                      (4.27) 

The sum of the averages, ′ ′ x inside + ′ ′ x out = 0 because it represents the average along the full 

orbit, and we are talking here about the closed orbits. Therefore, 

                   
BV (outside)

BV

 
  

 
  

= 1+ α 0
∆p
p

 
  

 
  

∆p
p

,                                     (4.28) 

which is the result (4.24) for quads alone. ( BV (outside) ≡ ∆BV , since the designed fields of all 

lenses equal zero at ∆p/ p = 0.) Therefore, the sextupoles' contribution equals exactly zero. 

 Now, gathering all contributions together, using the formulas and numbers represented 

here, ( LBE / L = 0.7547,  relativistic γ 2 = 1.1765,.α 0 = 0.03327 , etc.), we have: 

∆ωa( )p =
e
m

a BV
LBE

L
1 +

1
γ 2

2E
a βB

−1
 
  

 
  

 

  
 

  
∆p
p

+ 0.0164 +α 0 −
E

a βγ 4B
+

3β2

2γ 2
2E
a βB

−1
 
  

 
  

 

  
 

  
 

 
 
 

 

 
 
 

∆p
p

 
  

 
  

2 
 
 

  

 
 
 

  

                                                                                                                                                  (4.29) 
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      ∆ωa( )p = a3
∆p
p

 
  

 
  

2

,   a3 =
e
m

a BV 0.9881 +1.9437α 2[ ] .                  (4.30) 

To eliminate a3 , we need  

                             α 2 =−
′ ′ B iDi

3lsi

2BR
1
L

=∑ -0.51.                                         (4.31) 

 For an estimation, assume that we can use only 10 sextupoles placed next to + quads, ls = 0.5m ,  

D+ = 0.8921m , B=0.2095T, R=15m, L=124.89m. Then we need ′ ′ B = 90m−2 . ANL uses 

sextupoles with ′ ′ B = 415m−2  (for Advanced Proton Source, see  [1] , p. 443, table 2).  

 

   5. Calculation and correction of the a1 Ax
2  and a2 Ay

2  terms. 

 We now discuss the (generalized) horizontal and vertical pitch effects. The horizontal 

pitch effect has not been previously noted. (In my EDM Note #10, I considered only cases xβ =  
dxβ / ds = 0 , that is Ax

2 = 0 .)  

 There are four physically different effects leading to the dependence of ∆ωa  on  Ax
2,  Ay

2
.   

 1. The first effect is the result of the combination of trajectory lengthening, ∆L / L , due to     

ϑ x
2 ≡ (dxβ / ds)2  and ϑ y

2 ≡ (dy / ds)2 , see formula (3.6), and the synchrotron stability leading to 

dependence of ∆p / p  on this lengthening. The effect can be calculated immediately. 

   
∆L
L

 
 

 
 

′ x β , ′ y 
=

1
2

ϑ x
2 + ϑ y

2( )=
1
4

1
s

d ′ s γ x( ′ s )Ax
2 +γ y( ′ s )Ay

2( )
0

s

∫ ,              (5.1) 

where γ = (1+ α 2 )/ β   is one of the three Courant-Snyder parameters. In (5.1) s → ∞ . Formula 

(5.1) follows from formulas (2), (3) of [1], p.49, 

x(s) = Ax βx (s) cos ψ x(s) +δx( ), ′ x (s) = −
Ax

β x(s)
α x (s)cos ψ x (s) +δx( )+ sin ψ x(s) +δx( )[ ]  (5.2)             

and analogously for y. A,  δ  are constants, 

                       A2 = xmax
2 (s)/ β(s) = (xmax

2 (s))max / βmax.                              (5.3)  

So if, for example, xmax (s)( )max =2.5cm, and βmax =6.5m, then A2 =0.9654 ×10−4 m. In our lattice, 

βmax = β+ .   

 In (5.1), γ x =constant between quadrupoles (but not inside quadrupoles), see Edwards 

and Syphers [6], p.97. We have (with γ -values given in (3.19), (3.32) above), 
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∆L
L

 
 

 
 

′ x β

=
∆L
L

 
 

 
 

′ x β BE
+

∆L
L

 
 

 
 

′ x β I
=

Ax
2

4
γ x ,BE

LBE

L +γ x ,I
LI

L
 
  

 
  

= 0.2134 Ax
2 .           (5.4) 

This goes into ∆p / p ,  

                       
∆p
p ′ x β

=
(∆L / L) ′ x β

1/γ 2 − α0

= 0.2613Ax
2 .                                     (5.5) 

This, in turn, goes into                    

 ∆ωa( ) ′ x β
=

e
m

a BV
LBE

L
1 +

1
γ 2

2E
a βB

−1
 
  

 
  

 

 
 
 

 

 
 
 

∆p
p

=
e
m

a BV ⋅ 0.4147Ax
2 .            (5.6) 

 γ y (s) has exactly the same value as γ x =1.0444 in the straight sections. It is slightly 

different, and not exactly constant, in the BE's, because vertical oscillations are focused there (the 

field index n=1). In the linear approximation, in which γ y  is defined, 

    ′ ′ y +
1

R2 y = 0,     inside BE's, linear approximation.                            (5.7) 

We get 

   
∆L
L

 
 

 
 

′ y 
= 0.2139Ay

2 ,   ∆ωa( ) ′ y =
e
m

a BV ⋅ 0.4157Ay
2 .                            (5.8) 

 2. The second effect also depends on betatron angles, ϑ x , ϑ y . Due to these angles,  

magnetic and electric fields met by a spin passing a BE section differ from their designed values. 

With respect to the electric field, the average vector product   
r v ×

r 
E   is changed. (Such an effect 

was not dangerous in our (g-2) ring only because, in the g-2 experiment, the equilibrium electric 

field equalled zero.) As for the magnetic field, the effect is the usual F. Farley pitch. The best 

way to understand both electric and magnetic field perturbations in this case is to analyze the J.D. 

Jackson formula (11.171), [7], p.550: 

   
  

d
dt

r v 
v

⋅
r 
s  

 
 
 = −

e
mc

r 
s perp ⋅

g − 2
2

 
 

 
 

r v 
v

×
r 
B +

gβ
2

−
1
β

 
  

 
  

r 
E 

 

 
 

 

 
 ,                       (5.9) 

where   
r v  is velocity, β = v / c ,   

r s  is the rest frame spin,  
r s perp  is a part of the spin vector 

perpendicular to   
r v . We consider the case of  

r 
B   =

r 
B V   perpendicular, and   

r 
E =

r 
E R  parallel to the 

ideal orbit plane.   
r v ×

r 
B  is also parallel to the plane; therefore, only the component of   

r s perp  lying 

in the plane contributes to rotation of the spin relative to velocity. It is easy to see, with a little 

algebra, that if   
r v  is also lying in the plane and is perpendicular to  

r 
E , and condition (1.1) is 
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satisfied, then there is no (g-2)-rotation; the square brackets in (5.8) equal zero. (To see this, use 

the identity  gβ / 2 − 1/ β ≡ aβ − β / γ 2β2 .)  But if the velocity is not lying in the ideal plane, then 

in (5.9),                                
r 
v ×

r 
B = vBcos(dy / ds),                                           

(5.10) 

while the angles between   
r s perp  (lying, remember, in the ideal plane) and  

r v ×
r 
E , and between  

r s perp   

and   
r 
E  are not changed. The component s perp  lying in the horizontal plane is also not changed. 

But if   
r v  deviates from the ideal orbit in the horizontal plane, then in (5.9), 

                             
r s perp ⋅

r 
E = sperp E cos(dx / ds),                                        (5.11) 

while the magnetic term is not changed. Therefore,  

       ∆ωa( ) ′ x E , ′ y B =
e
m

a BV ⋅
LBE

L
1
2

ϑ x
2 − ϑ y

2[ ]=
e
m

a BV
LBE

L
1
4

γ x Ax
2 − γ y Ay

2( )      (5.12) 

                                    =
e
m

a BV ⋅ 0.1493Ax
2 − 0.1499Ay

2( ).                                   (5.13) 

 3. Inside BE's, the vertical magnetic field depends on a particle's vertical position, see 

(3.3) above. This immediately gives us 

   ∆ωa( )y 2 =
e
m

a BV
∆BV

BV

 
  

 
  y2

= −
e
m

a BV ⋅
1
4

LBE

L
βy BE

R2 Ay
2 =−

e
m

a BV ⋅ 0.00291Ay
2 .    (5.14) 

( βy BE
= 3.507.) The effect is very small by comparison with effects 1 and 2. In addition to 

(5.14), the field perturbation ∆B / B( )y 2  slightly shifts the equilibrium horizontal orbit; we will 

neglect this effect.  

 4. We obviously need to compensate effects proportional to Ax ,y
2  because with Ax ,y

2 ~ 10−4  

and ∆p / p( )2 ~ 10−6 , the violation of condition (1.1) by betatron oscillations is more than one 

order larger than the violation by the momentum spread. So the fourth effect is the effect of 

sextupoles used for these compensations. When the particle performing betatron oscillations 

passes sextupole #i  periodically, it periodically gets a horizontal angle deflection equal to  

                           (θ x)i = −
′ ′ B i x 2 − y2( )i

lsi

2BR
.                                               (5.15) 

On the average, 

                      θx( )i = −
′ ′ B (βx Ax

2 − βy Ay
2 )i lsi

4BR
.                                       (5.16) 
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According to [1], p.263, formula (2), this periodic deflection shifts the horizontal equilibrium, so 

                  
∆L
L

 
 

 
 

q
= −

′ ′ B iDi(βxi Ax
2 − βyiAy

2 )lsi

4BRL∑ .                                   (5.17)     

Because of the synchrotron stability, (5.17) leads to the shift of the momentum equilibrium, 

    

            
∆p
p q

=
∆L / L( )q

1/γ 2 −α 0

= −
1

(1/ γ 2 −α 0 )
′ ′ B iDi(βxiAx

2 − β yiAy
2 )lsi

4BRL∑ .            (5.18) 

And, finally, this leads to the corresponding violation of condition (1.1). Using the term 

proportional to ∆p / p  in our formula (4.26), we get 

   ∆ωa( )q = −0.9719
′ ′ B iDiβxi lsi

2BRL∑ Ax
2 + 0.9719

′ ′ B iDiβyi lsi

2BRL
Ay

2∑ .               (5.19) 

After gathering all betatron terms, we have 

       ∆ωa( )xq ≡ a1Ax
2 = 0.564 − 0.9719

′ ′ B k Dkβxklsk

2BRL∑ 
 

 
 Ax

2 ,                      (5.20) 

      ∆ωa( )yk ≡ a2Ay
2 = 0.2629 + 0.9719

′ ′ B k Dkβyklsk

2BRL∑ 
  

 
  

Ay
2 .                    (5.21)  

 

6. Conclusion. 

 Thus, the situation is the following. To cancel a1, a2, a3 , we need to satisfy three 

conditions: 

     1.
′ ′ B kDkβxklsk

2BRL∑ = 0.58 , a1 = 0. 

     2. 
′ ′ B kDkβyklsk

2BRL∑ = −0.27, a2 = 0. 

 `    3. 
′ ′ B kDk

3lsk

2BRL∑ = 0.51,  a3 = 0. 

 It is instructive to compare these conditions with the conditions for the betatron 

chromaticity cancellation:  

     
′ ′ B kDkβxklsk

2BRL∑ ≈ 0.43, ξx = 0.  

     
′ ′ B kDkβyklsk

2BRL∑ ≈ −0.43 ξy = 0. 

We see, first, that when we satisfy our conditions 1 and 2, we simultaneously reduce the x-

chromaticity to -26%, and the y-chromaticity to 37% of their original magnitudes. And second, 
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since the cancellation of chromaticities is a routine part of the storage ring's operations, there is 

no doubt that we can satisfy conditions 1 and 2. 

 It is much more difficult to satisfy condition 3 of cancellation of (∆p / p)2 . In the FODO 

(semicircle) part of our ring, D2(s) ~ 0.12β x(s), and for this reason cancellations 1 and 2 require 

eight times smaller sextupole fields than cancellation 3. That means that we may easily cancel 1 

and 2 almost without influencing 3, but satisfying all three conditions requires some tricks. We 

need to design areas where the D-function is 3-4 times bigger than usual. 

 Taking this into account, it seems much simpler to squeeze ∆p/ p  by some factor 3 (we 

will not need more) by using well-known synchrotron methods, not sextupoles. 

 If (∆p / p)2 =10-6, xmax = ymax =2.5 cm, then the coherence time ~10 s can be achieved by 

satisfying 1 and 2 only, with accuracy ~1%. To get coherence time ~1 min, it is sufficient to 

squeeze ∆p/ p  by a factor of three, and to satisfy 1 and 2 with accuracy 0.15%. 

 

 

 

Fig. 1  The ring.    

Fig. 2  One small period of the FODO part.  

Fig. 3  Straight section.  The half (focusing) lens is 1/f but the whole lens should be 2/f instead of 

1/f as is erroneously written.  

Figs. 4 a, b. The effects of trajectory lengthening. 

Fig. 5 β x,  β y ,  D,  D2,  γ x  in the semicircle FODO part of the ring.  

Fig. 6 β x,  β y ,  D,  D2,  γ x   in the straight section.  
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