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Understanding Radiation
This section introduces the general reader to some basic concepts of radioactivity and an under-

standing of the radiation emitted as radioactive materials decay to a stable state. To better compre-
hend the radiological information in the Site Environmental Report (SER), it is important to re-
member that not all radiations are the same and that different kinds of radiation affect living beings 
differently.

This appendix includes discussions on the common sources of radioactivity in the environment, 
types of radiation, the analyses used to quantify radioactive material, and how radiation sources 
contribute to radiation dose. Some general statistical concepts are also presented, along with a 
discussion of radionuclides that are of environmental interest at BNL. The discussion begins with 
some definitions and background information on scientific notation and numerical prefixes used 
when measuring dose and radioactivity. The definitions of commonly used radiological terms are 
found in the Technical Topics section of the glossary, Appendix A, and are indicated in boldface 
type here only when the definition in the glossary provides additional details.

RADIOACTIVITY AND RADIATION

All substances are composed of atoms that are 
made of subatomic particles: protons, neutrons, 
and electrons. The protons and neutrons are 
tightly bound together in the positively charged 
nucleus (plural: nuclei) at the center of the 
atom. The nucleus is surrounded by a cloud of 
negatively charged electrons. Most nuclei are 
stable because the forces holding the protons 
and neutrons together are strong enough to 
overcome the electrical energy that tries to push 
them apart. When the number of neutrons in the 
nucleus exceeds a threshold, then the nucleus 
becomes unstable and will spontaneously “de-
cay,” or emit excess energy (“nuclear” energy) 
in the form of charged particles or electromag-
netic waves. Radiation is the excess energy 
released by unstable atoms. Radioactivity and 
radioactive refer to the unstable nuclear prop-
erty of a substance (e.g., radioactive uranium). 
When a charged particle or electromagnetic 
wave is detected by radiation-sensing equip-
ment, this is referred to as a radiation event.

Radiation that has enough energy to remove 
electrons from atoms within material (a pro-
cess called ionization) is classified as ionizing 
radiation. Radiation that does not have enough 
energy to remove electrons is called nonionizing 
radiation. Examples of nonionizing radiation 
include most visible light, infrared light, micro-
waves, and radio waves. All radiation, whether 

ionizing or not, may pose health risks. In the 
SER, radiation refers to ionizing radiation.

Radioactive elements (or radionuclides) are 
referred to by name followed by a number, such 
as cesium-137. The number indicates the mass 
of that element and the total number of neutrons 
and protons contained in the nucleus of the atom. 
Another way to specify cesium-137 is Cs-137, 
where Cs is the chemical symbol for cesium in 
the Periodic Table of the Elements. This type of 
abbreviation is used throughout the SER.

SCIENTIFIC NOTATION

Most numbers used for measurement and 
quantification in the SER are either very large or 
very small, and many zeroes would be required 
to express their value. To avoid this, scientific 
notation is used, with numbers represented in 
multiples of 10. For example, the number two 
million five hundred thousand (two and a half 
million, or 2,500,000) is written in scientific 
notation as 2.5 x 106, which represents “2.5 
multiplied by 10 raised to the power of 6.” 
Since even “2.5 x 106” can be cumbersome, the 
capital letter E is substituted for the phrase “10 
raised to the power of …” Using this format, 
2,500,000 is represented as 2.5E+06. The “+06” 
refers to the number of places the decimal point 
was moved to the left to create the shorter ver-
sion. Scientific notation is also used to represent 
numbers smaller than zero, in which case a 
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minus sign follows the E rather than a plus. For 
example, 0.00025 can be written as 2.5 x 10-4 
or 2.5E-04. Here, “-04” indicates the number of 
places the decimal point was moved to the right.

NUMERICAL PREFIXES

Another method of representing very large or 
small numbers without using many zeroes is to 
use prefixes to represent multiples of ten. For 
example, the prefix milli (abbreviated m) means 
that the value being represented is one-thou-
sandth of a whole unit; 3 mg (milligrams) is 3 
thousandths of a gram or E-03. See Appendix 
C for additional common prefixes, including 
pico (p), which means trillionth or E-12, giga 
(G), which means billion or E+09, and tera (T), 
which means trillion, E+12. 

SOURCES OF IONIZING RADIATION

Radiation is energy that has both natural and 
manmade sources. Some radiation is essential 
to life, such as heat and light from the sun. 
Exposure to high-energy (ionizing) radiation 
has to be managed, as it can pose serious health 
risks at large doses. Living things are exposed 
to radiation from natural background sources: 
the atmosphere, soil, water, food, and even our 
own bodies. Humans are exposed to ionizing 
radiation from a variety of common sources, the 
most significant of which follow. 
Background Radiation – Radiation that occurs 
naturally in the environment is also called back-
ground activity. Background radiation consists 

of cosmic radiation from outer space, radiation 
from radioactive elements in soil and rocks, and 
radiation from radon and its decay products in 
air. Some people use the term background when 
referring to all non-occupational sources com-
monly present. Other people use natural to refer 
only to cosmic and terrestrial sources, and back-
ground to refer to common man-made sources 
such as medical procedures, consumer products, 
and radioactivity present in the atmosphere from 
former nuclear testing. In the SER, the term 
natural background is used to refer to radiation 
from cosmic and terrestrial radiation.
Cosmic – Cosmic radiation primarily consists of 
charged particles that originate in space, beyond 
the earth’s atmosphere. This includes ionizing 
radiation from the sun, and secondary radia-
tion generated by the entry of charged particles 
into the earth’s atmosphere at high speeds and 
energies. Radioactive elements such as hydro-
gen-3 (tritium), beryllium-7, carbon-14, and 
sodium-22 are produced in the atmosphere by 
cosmic radiation. Exposure to cosmic radiation 
increases with altitude, because at higher eleva-
tions the atmosphere and the earth’s magnetic 
field provide less shielding. Therefore, people 
who live in the mountains are exposed to more 
cosmic radiation than people who live at sea 
level. The average dose from cosmic radiation 
to a person living in the United States is ap-
proximately 26 mrem per year. (For an expla-
nation of dose, see effective dose equivalent in 
Appendix A. The units rem and sieverts also are 
explained in Appendix A.)
Terrestrial – Terrestrial radiation is released 
by radioactive elements that have been pres-
ent in the soil since the formation of the earth. 
Common radioactive elements that contribute to 
terrestrial exposure include isotopes of potas-
sium, thorium, actinium, and uranium. The 
average dose from terrestrial radiation to a per-
son living in the United States is approximately 
28 mrem per year, but may vary considerably 
depending on the local geology.
Internal  – Internal exposure occurs when ra-
dionuclides are ingested, inhaled, or absorbed 
through the skin. Radioactive material may be 
incorporated into food through the uptake of ter-
restrial radionuclides by plant roots. People can 

Figure B-1. Typical Annual Radiation Doses from Natural and Man-
Made Sources (mrem). Source: NCRP Report No. 93 (NCRP 1987)
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ingest radionuclides when they eat contaminat-
ed plant matter or meat from animals that have 
consumed contaminated plants. The average 
dose from food for a person living in the United 
States is about 40 mrem per year. A larger expo-
sure, for most people, comes from breathing the 
decay products of naturally occurring radon gas. 
The average dose from breathing air with radon 
byproducts is about 200 mrem per year, but 
that amount varies depending on geographical 
location. An Environmental Protection Agency 
(EPA) map shows that BNL is located in one of 
the regions with the lowest potential radon risk.
Medical – Every year in the United States, mil-
lions of people undergo medical procedures 
that use ionizing radiation. Such procedures 
include chest and dental x-rays, mammography, 
thallium heart stress tests, and tumor irradia-
tion therapies. The average doses from nuclear 
medicine and x-ray examination procedures are 
about 14 and 39 mrem per year, respectively.
Anthropogenic – Sources of anthropogenic (man-
made) radiation include consumer products such 
as static eliminators (containing polonium-210), 
smoke detectors (containing americium-241), 
cardiac pacemakers (containing plutonium-238), 
fertilizers (containing isotopes from uranium 
and thorium decay series), and tobacco products 
(containing polonium-210 and lead-210). The 
average dose from consumer products to a per-
son living in the United States is 10 mrem per 
year (excluding tobacco contributions). 

COMMON TYPES OF IONIZING RADIATION

The three most common types of ionizing 
radiation are described below.
Alpha Radiation – An alpha particle is identi-
cal in makeup to the nucleus of a helium atom, 
consisting of two neutrons and two protons. 
Alpha particles have a positive charge and have 
little or no penetrating power in matter. They 
are easily stopped by materials such as paper 
and have a range in air of only an inch or so. 
However, if alpha-emitting material is ingested, 
alpha particles can pose a health risk inside the 
body. Naturally occurring radioactive elements 
such as uranium emit alpha radiation.
Beta Radiation – Beta radiation is composed 
of particles that are identical to electrons. 

Therefore, beta particles have a negative charge. 
Beta radiation is slightly more penetrating than 
alpha radiation, but most beta radiation can be 
stopped by materials such as aluminum foil and 
plexiglass panels. Beta radiation has a range in 
air of several feet. Naturally occurring radioac-
tive elements such as potassium-40 emit beta 
radiation. Some beta particles present a hazard 
to the skin and eyes.
Gamma Radiation – Gamma radiation is a form 
of electromagnetic radiation, like radio waves 
or visible light, but with a much shorter wave-
length. Gamma rays are emitted from a radioac-
tive nucleus along with alpha or beta particles. 
Gamma radiation is more penetrating than alpha 
or beta radiation, capable of passing through 
dense materials such as concrete. Gamma radia-
tion is identical to x-rays except that x-rays 
are more energetic. Only a fraction of the total 
gamma rays a person is exposed to will interact 
with the human body. 

TYPES OF RADIOLOGICAL ANALYSES

The amount of radioactive material in a 
sample of air, water, soil, or other material can 
be assessed using several analyses, the most 
common of which are described below.
Gross alpha – Alpha particles are emitted from 
radioactive material in a range of different 
energies. An analysis that measures all alpha 
particles simultaneously, without regard to their 
particular energy, is known as a gross alpha ac-
tivity measurement. This type of measurement 
is valuable as a screening tool to indicate the 
total amount but not the type of alpha-emitting 
radionuclides that may be present in a sample.
Gross beta – This is the same concept as that for 
gross alpha analysis, except that it applies to the 
measurement of gross beta particle activity. 
Tritium – Tritium radiation consists of low-en-
ergy beta particles. It is detected and quantified 
by liquid scintillation counting. More infor-
mation on tritium is presented in the section 
Radionuclides of Environmental Interest, later 
in this appendix.
Strontium-90 – Due to the properties of the 
radiation emitted by strontium-90 (Sr-90), 
a special analysis is required. Samples are 
chemically processed to separate and collect any 
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strontium atoms that may be present. The col-
lected atoms are then analyzed separately. More 
information on Sr-90 is presented in the section 
Radionuclides of Environmental Interest.
Gamma – This analysis technique identifies 
specific radionuclides. It measures the particu-
lar energy of a radionuclide’s gamma radiation 
emission. The energy of these emissions is 
unique for each radionuclide, acting as a “fin-
gerprint” to identify it.

STATISTICS

Two important statistical aspects of measur-
ing radioactivity are uncertainty in results, and 
negative values.

Uncertainty – Because the emission of radia-
tion from an atom is a random process, a sample 
counted several times usually yields a slightly 
different result each time; therefore, a single 
measurement is not definitive. To account for 
this variability, the concept of uncertainty is ap-
plied to radiological data. In the SER, analysis 
results are presented in an x ± y format, where 
“x” is the analysis result and “± y” is the 95 
percent “confidence interval” of that result. That 
means there is a 95 percent probability that the 
true value of x lies between (x + y) and (x – y).

Negative values – There is always a small 
amount of natural background radiation. The 
laboratory instruments used to measure radioac-
tivity in samples are sensitive enough to mea-
sure the background radiation along with any 
contaminant radiation in the sample. To obtain 
a true measure of the contaminant level in a 
sample, the background radiation level must be 
subtracted from the total amount of radioactivity 
measured. Due to the randomness of radioac-
tive emissions and the very low concentrations 
of some contaminants, it is possible to obtain 
a background measurement that is larger than 
the actual contaminant measurement. When the 
larger background measurement is subtracted 
from the smaller contaminant measurement, a 
negative result is generated. The negative results 
are reported, even though doing so may seem 
illogical, but they are essential when conducting 
statistical evaluations of data.

Radiation events occur randomly; if a radioac-
tive sample is counted multiple times, a spread, 

or distribution, of results will be obtained. 
This spread, known as a Poisson distribu-
tion, is centered about a mean (average) value. 
Similarly, if background activity (the number 
of radiation events observed when no sample 
is present) is counted multiple times, it also 
will have a Poisson distribution. The goal of a 
radiological analysis is to determine whether a 
sample contains activity greater than the back-
ground reading detected by the instrument. 
Because the sample activity and the background 
activity readings are both Poisson distributed, 
subtraction of background activity from the 
measured sample activity may result in values 
that vary slightly from one analysis to the next. 
Therefore, the concept of a minimum detection 
limit (MDL) was established to determine the 
statistical likelihood that a sample’s activity is 
greater than the background reading recorded by 
the instrument.

Identifying a sample as containing activity 
greater than background, when it actually does 
not have activity present, is known as a Type I 
error. Most laboratories set their acceptance of 
a Type I error at 5 percent when calculating the 
MDL for a given analysis. That is, for any value 
that is greater than or equal to the MDL, there is 
95 percent confidence that it represents the de-
tection of true activity. Values that are less than 
the MDL may be valid, but they have a reduced 
confidence associated with them. Therefore, 
all radiological data are reported, regardless of 
whether they are positive or negative

At very low sample activity levels that are 
close to the instrument’s background reading, it 
is possible to obtain a sample result that is less 
than zero. This occurs when the background 
activity is subtracted from the sample activ-
ity to obtain a net value, and a negative value 
results. Due to this situation, a single radia-
tion event observed during a counting period 
could have a significant effect on the mean 
(average) value result. Subsequent analysis 
may produce a sample result that is positive. 
When the annual data for the SER are com-
piled, results may be averaged; therefore, all 
negative values are retained for reporting as 
well. This data handling practice is consistent 
with the guidance provided in the Handbook of 
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Radioactivity Measurements Procedures (NCRP 
1985) and the Environmental Regulatory 
Guide for Radiological Effluent Monitoring 
and Environmental Surveillance (DOE 1991). 
Average values are calculated using actual 
analytical results, regardless of whether they are 
above or below the MDL, or even equal to zero. 
The uncertainty of the mean, or the 95 percent 
confidence interval, is determined by multiply-
ing the population standard deviation of the 
mean by the t(0.05) statistic.

RADIONUCLIDES OF ENVIRONMENTAL INTEREST

Several types of radionuclides are found in 
the environment at BNL due to historical opera-
tions. 
Cesium-137 – Cs-137 is a fission-produced ra-
dionuclide with a half-life of 30 years (after 30 
years, only one half of the original activity level 
remains). It is found in the worldwide environ-
ment as a result of past aboveground nuclear 
weapons testing and can be observed in near-
surface soils at very low concentrations, usually 
less than 1 pCi/g (0.004 Bq/g). Cs-137 is a beta-
emitting radionuclide, but it can be detected by 
gamma spectroscopy because its decay product, 
barium-137m, emits gamma radiation.

Cs-137 is found in the environment at BNL 
mainly as a soil contaminant, from two main 
sources. The first source is the worldwide depo-
sition from nuclear accidents and fallout from 
weapons testing programs. The second source 
is deposition from spills or releases from BNL 
operations. Nuclear reactor operations produce 
Cs-137 as a byproduct. In the past, wastewater 
containing small amounts of Cs-137 generated 
at the reactor facilities was routinely discharged 
to the Sewage Treatment Plant (STP), result-
ing in low-level contamination of the STP 
and the Peconic River. In 2002/2003, under 
the Environmental Restoration Program, sand 
and its debris containing low levels of Cs-137, 
Sr-90, and heavy metals were removed, assur-
ing that future discharges from the STP are free 
of these contaminants. Soil contaminated with 
Cs-137 is associated with the following areas 
that have been, or are being, addressed as part 
of the Environmental Remediation Program: 
former Hazardous Waste Management Facility, 

Waste Concentration Facility, Building 650 
Reclamation Facility and Sump Outfall Area, 
and the Brookhaven Graphite Research Reactor 
(BGRR). 
Strontium-90 – Sr-90 is a beta-emitting radionu-
clide with a half-life of 28 years. Sr-90 is found 
in the environment principally as a result of fall-
out from aboveground nuclear weapons testing. 
Sr-90 released by weapons testing in the 1950s 
and early 1960s is still present in the environ-
ment today. Additionally, nations that were not 
signatories of the Nuclear Test Ban Treaty of 
1963 have contributed to the global inventory of 
fission products (Sr-90 and Cs-137). This radio-
nuclide was also released as a result of the 1986 
Chernobyl accident in the former Soviet Union.

Sr-90 is present at BNL in the soil and 
groundwater. As in the case of Cs-137, some 
Sr-90 at BNL results from worldwide nuclear 
testing; the remaining contamination is a by-
product of reactor operations. The following 
areas with Sr-90 contamination have been or are 
being addressed as part of the Environmental 
Remediation Program: former Hazardous Waste 
Management Facility, Waste Concentration 
Facility, Building 650 Reclamation Facility and 
Sump Outfall Area, the BGRR, Former and 
Interim Landfills, Chemical and Glass Holes 
Area, and the STP.

The information in SER tables is arranged 
by method of analysis. Because Sr-90 requires 
a unique method of analysis, it is reported as a 
separate entry. Methods for detecting Sr-90 us-
ing state-of-the-art equipment are quite sensitive 
(detecting concentrations less than 1 pCi/L), 
which makes it possible to detect background 
levels of Sr-90.
Tritium – Among the radioactive materials that 
are used or produced at BNL, tritium has re-
ceived the most public attention. Approximately 
4 million Ci (1.5E+5 TBq) per year are pro-
duced in the atmosphere naturally (NCRP 
1979). As a result of aboveground weapons test-
ing in the 1950s and early 1960s in the United 
States, the global atmospheric tritium inventory 
was increased by a factor of approximately 
200. Other human activities such as consumer 
product manufacturing and nuclear power reac-
tor operations have also released tritium into the 
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bombardment; the accelerator facilities, where 
tritium is produced by secondary radiation 
interactions with soil and water; and facilities 
like the Brookhaven Linac Isotope Producer, 
where tritium is formed from secondary radia-
tion interaction with cooling water. Tritium 
has been found in the environment at BNL as 
a groundwater contaminant from operations 
in the following areas: Current Landfill, BLIP, 
Alternating Gradient Synchrotron, and the High 
Flux Beam Reactor. Although small quantities 
of tritium are still being released to the envi-
ronment through BNL emissions and effluents, 
the concentrations and total quantity have been 
drastically reduced, compared with historical 
operational releases as discussed in Chapters 4 
and 5. 
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environment. Commercially, tritium is used in 
products such as self-illuminating wristwatches 
and exit signs (the signs may each contain as 
much as 25 Ci [925 GBq] of tritium). Tritium 
also has many uses in medical and biological 
research as a labeling agent in chemical com-
pounds, and is frequently used in universities 
and other research settings such as BNL and 
other national laboratories. 

Of the sources mentioned above, the most 
significant contributor to tritium in the environ-
ment has been aboveground nuclear weapons 
testing. In the early 1960s, the average tritium 
concentration in surface streams in the United 
States reached a value of 4,000 pCi/L (148 Bq/
L; NCRP 1979). Approximately the same con-
centration was measured in precipitation. Today, 
the level of tritium in surface waters in New 
York State is less than one-twentieth of that 
amount, below 200 pCi/L (7.4 Bq/L; NYSDOH 
1993). This is less than the detection limit of 
most analytical laboratories.

Tritium has a half-life of 12.3 years. When an 
atom of tritium decays, it releases a beta par-
ticle, causing transformation of the tritium atom 
into stable (nonradioactive) helium. The beta 
radiation that tritium releases has a very low 
energy, compared to the emissions of most other 
radioactive elements. In humans, the outer layer 
of dead skin cells easily stops the beta radia-
tion from tritium; therefore, only when tritium 
is taken into the body can it cause an exposure. 
Tritium may be taken into the body by inhala-
tion, ingestion, or absorption of tritiated water 
through the skin. Because of its low energy 
radiation and short residence time in the body, 
the health threat posed by tritium is very small 
for most exposures.

Environmental tritium is found in two forms: 
gaseous elemental tritium, and tritiated water or 
water vapor, in which at least one of the hydro-
gen atoms in the H2O water molecule has been 
replaced by a tritium atom (hence, its shorthand 
notation, HTO). Most of the tritium released 
from BNL sources is in the form of HTO, none 
as elemental tritium. Sources of tritium at BNL 
include the reactor facilities (all now non-op-
erational), where residual water (either heavy 
or light) is converted to tritium via neutron 


