1. Condensed-Matter Physics & Materials Science Seminar

    "2-dimensional Superconductivity at the LaAlO3/SrTiO3 Interface"

    Presented by Jean-Marc Triscone, DQMP, University of Geneva, Switzerland

    Tuesday, April 7, 2015, 1:30 pm
    ISB Bldg. 734, Conf. Rm. 201 (upstairs)

    Hosted by: Ivan Bozovic

    The interface between LaAlO3 and SrTiO3, two good band insulators, which was found in 2004 to be conducting [1], and, in some doping range, superconducting with a maximum critical temperature of about 200 mK [2] is attracting of lot of attention. The electronic structure of the system displays signatures of confinement and of the d-character of the carriers. This electron liquid has a thickness of a few nanometers at low temperatures and a low electronic density. Being naturally sandwiched between two insulators, it is ideal for performing electric field effect experiments that allow the carrier density to be tuned and the phase diagram of the system to be determined [3]. I will discuss in this presentation superconductivity, the phase diagram of the system and the link with bulk doped SrTiO3, spin orbit [4], and an approach that allows superconducting coupling between different gases to be studied. I will also discuss recent thermopower measurements that allow access to localized electronic states [5]. [1] A. Ohtomo, H. Y. Hwang, Nature 427, 423 (2004). [2] N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone and J. Mannhart, Science 317, 1196 (2007). [3] A. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, Nature 456, 624 (2008). [4] A.D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, Physical Review 104, 126803 (2010). [5] I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J.-M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, to appear in Nature Communications.