Table of contents as they appeared in the original proceedings

Return to 1968 Proceedings Home Page

Directly Jump to    1st Week        2nd Week      3rd Week     4th Week     5th Week     6th Week

Author Index


Introductory Remarks – Maurice Goldhaber, Director, Brookhaven National Laboratory

iii

Editor’s Preface – Albert G. Prodell, Brookhaven National Laboratory

iv

Introduction – John P. Blewett, Brookhaven National Laboratory  

v

 

 

FIRST WEEK – SUPERCONDUCTING RF CAVITIES AND LINACS

 

Chairman: H.A. Schwettman, Stanford University

 

(Photos)

 

The Development of Low Temperature Technology at Stanford and its Relevance to High Energy Physics

1

    H. Alan Schwettman, Stanford University

 

 

 

Q Measurements on Superconducting Cavities at S-Band  

13

     H. Hahn, H.J. Halama, and E.H. Foster, Brookhaven National Laboratory

 

 

 

Coupling Losses in Superconducting Cavities

18

     H. Hahn and J. Miller, Brookhaven National Laboratory

 

 

 

Fabrication of Niobium Rf Cavities

23

     R.W. Meyerhoff, Union Carbide Corporation

 

 

 

Fabrication of High Q Superconducting Niobium Cavities

32

     I. Weissman, Varian Associates

 

 

 

Materials Investigation for a Two-Mile Superconducting Accelerator

34

     M.A. Allen and H.A. Hogg, Stanford Linear Accelerator Center

 

 

 

Characterization of Residual Rf Losses in Superconductors

40

     C.R. Haden, University of Oklahoma

 

 

 

Technetium as a Material for ac Superconductivity Applications

49

     S.H. Autler, NASA Electronics Research Center

 

 

 

Applications of the Fountain Effect in Superfluid Helium

52

     C.M. Lyneis, M.S. McAshan, and H.A. Schwettman, Stanford University

 

 

 

Refrigeration at Temperatures Below the Boiling Point of Helium

59

     S.C. Collins, 500 Incorporated

 

 

 

Rf Amplitude and Phase Stabilization for a Superconducting Linear Accelerator by Feedback Stabilization Techniques

67

     L.R. Suelzle, Stanford University

 

 

 

Particle Motion in a Standing Wave Linear Accelerator

79

     E.E. Chambers, Stanford University

 

 

 

Sample Parameters of a Two-Mile Superconducting Accelerator

101

     R.B. Neal, Stanford Linear Accelerator Center

 

 

 

Consideration of the Use of Feedback in a Traveling-Wave Superconducting Accelerator

111

     R.B. Neal, Stanford Linear Accelerator Center

 

 

 

Summary of Recent Investigations of the Karlsruhe Group on Rf Properties of Superconductors and on Applications

127

     W. Jungst, Kernforschungszentrum Karlsruhe

 

 

 

An Enriched Particle Beam Using Superconducting Rf Deflectors

136

     H.N. Brown, Brookhaven National Laboratory

 

 

 

Design Problems in Superconducting Rf Beam Separators

150

     H.J. Halama, Brookhaven National Laboratory

 

 

 

Superconducting Rf Separator Research at the Rutherford Laboratory

165

     A. Carne, B.G. Brady, and M.J. Newman, Rutherford Laboratory

 

 

 

Beam Optics Design for a 600 MeV Microtron

169

     D.C. Sutton and A.O. Hanson, University of Illinois

 

 

 

High Stability UHF Oscillators using a Superconducting Cavity

171

     F. Biquard, Nguyen Tuong Viet, and A. Septier, Institut d’Electronique, Orsay

 

 

 

Summary of First week of Summer Study

187

     H. Alan Schwettman, Stanford University

 

 

 

SECOND WEEK - CRYOGENICS

 

Chairman: T.R. Strobridge, NBS, Boulder

 

 (Photos)

 

Refrigeration at 4 0K

193

     T.R. Strobridge, National Bureau of Standards, Boulder

 

 

 

European State of the Art in Cryogenics

205

     G. Prast, Philips Research Laboratories

 

 

 

Cryogenic Safety

229

     M.G. Zabetakis, Bureau of Mines

 

 

 

Cryopumping

230

     C. Barnes, CVI Corporation

 

 

 

Review of Heat Transfer to Helium I

249

     R.V. Smith, National Bureau of Standards, Boulder

 

 

 

An Examination of a Liquid Helium Refrigeration System for Superconducting Magnets in the 200 GeV Experimental Area

293

     M.A. Green, Lawrence Radiation Laboratory, Berkeley, and G.P. Coombs and J.L. Perry, 500  Incorporated

 

 

 

Cryogenic Electrical Leads

304

     C.D. Henning, Lawrence Radiation Laboratory, Livermore

 

 

 

Low Temperature Metals

311

     A. Hurlich, General Dynamics/Astronautics

 

 

 

Properties of Nonmetallic Materials at Cryogenic Temperatures

326

     R. Mowers, Rocketdyne

 

 

 

Review of the Cryogenics Session – Second Week of the Summer Study

368

     T.R. Strobridge, National Bureau of Standards, Boulder

 

 

 

THIRD WEEK – SUPERCONDUCTING  MATERIALS

 

Chairman: A. Paskin, Brookhaven National Laboratory

 

 (Photos)

 

Structure and Properties of High-Field Superconductors

377

     J.D. Livingston, General Electric Company

 

 

 

Instability Comments

393

     S.L. Wipf, Atomics International

 

 

 

Critical Current Behavior of Hard Superconductors

396

     W.W. Webb, Cornell University

 

 

 

Critical Fields of Type II Superconductors

405

     G. Cody, RCA Laboratories

 

 

 

The Effect of Radiation on the Properties of Superconducting Materials

437

     G.W. Cullen, RCA Laboratories

 

 

 

Niobium Tin and Related Superconductors

449

     R.B. Britton, Brookhaven National Laboratory

 

 

 

Composite Materials

465

     A.D. McInturff, Brookhaven National Laboratory

 

 

 

Materials and Conductor Configurations in Superconducting Magnets

478

     H. Brechna, Stanford Linear Accelerator Center

 

 

 

FOURTH WEEK – AC EFFECTS AND FLUX PUMPS

 

Chairman: S.L. Wipf, Atomics International

 

 (Photos)

 

Ac Losses in Superconductors

511

     S.L. Wipf, Atomics International

 

 

 

Use of Superconductors in High Energy Physics

544

     J.P. Blewett, Brookhaven National Laboratory

 

 

 

Electrical Loss Measurements in a NbTi Magnet

550

     F. Voelker, Lawrence Radiation Laboratory, Berkeley

 

 

 

Ac Losses in Magnets made of Nb3Sn Ribbon

559

     G.H. Morgan and P.F. Dahl, Brookhaven National Laboratory

 

 

 

Dynamic Resistivity of Hard Superconductors in a Perpendicular Time Varying Field

567

     A. Altorfer, F. Caimi, and J.M. Rayroux, Oerlikon Engineering Company

 

 

 

Magnetic Instabilities and Solenoid Performance: Applications of the Critical State Model

571

     H.R. Hart, Jr., General Electric Company

 

 

 

Magnetic and Thermal Instabilities Observed to Commercial Nb3Sn Superconductors

601

     G. del Castillo and L.O. Oswald, Argonne National Laboratory

 

 

 

Observations of Flux Jump Behavior Related to Various Changes of Geometry, and Thermal  and Electrical Environment

612

     A.D. McInturff, Brookhaven National Laboratory

 

 

 

Instabilities and Flux Annihilation

619

     S.L. Wipf, Atomics International

 

 

 

Superconducting Transmission Lines – Communication and Power

622

     N.S. Nahman, National Bureau of Standards, Boulder

 

 

 

Recent Developments in Superconductivity in Japan

628

     Presented by N. Takano, Tokyo Shibaura Electric Company

 

 

 

The Case for Flux Pumps and Some of Their Uses

632

     S.L. Wipf, Atomics International

 

 

 

Design Principles and Characteristics of the G.E. Flux Pump

654

     R.L. Rhodenizer, General Electric Company

 

 

 

Flux Pumps as Power Supplies in Comparison with Alternatives

667

     M.S. Lubell and K.R. Efferson, Oak Ridge National Laboratory

 

 

 

Flux Pump Work at Los Alamos

673

     H. Laquer, Los Alamos Scientific Laboratory

 

 

 

60 Hz Flux Pumps

679

     R.B. Britton, Brookhaven National Laboratory

 

 

 

Proposal for a Flux Pump Utilizing the Inverse Ettingshausen Effect in Hard Type II Superconductors in the Mixed State

681

     W.H. Bergmann, Argonne National Laboratory

 

 

 

Summary of the Fourth Week – Ac Losses, Instability and Flux Pumps

683

     S.L. Wipf, Atomics International

 

 

 

FIFTH WEEK – SUPERCONDUCTING MAGNETS

 

Chairman: W.B. Sampson, Brookhaven National Laboratory

 

 (Photos)

 

Stress Problems Associated with Superconducting and Cryogenic Magnets

709

     P.G. Marston, Magnetic Engineering Associates

 

 

 

Stresses in Magnetic Field Coils

714

     W.F. Westendorp and R.W. Kilb, General Electric Company

 

 

 

Very High Field Hybrid Magnet Systems

727

     D. Bruce Montgomery, J.E.C. Williams, N.T. Pierce, R. Weggel, and M.J. Leupold,

     Francis Bitter National Magnet Laboratory

 

 

 

Principles of Stability in Cooled Superconducting Magnets

748

     Z.J.J. Stekly, R. Thome, and B. Strauss, Avco Everette Research Laboratory

 

 

 

The 1.8 Tesla, 4.8 m i.d. Bubble Chanmer Magnet

765

     J.R. Purcell, Argonne National Laboratory

 

 

 

The Superconducting Magnet for the Proposed 25-foot Cryogenic Bubble Chamber

786

     A.G. Prodell, Brookhaven National Laboratory

 

 

 

The Superconducting Magnet for the Brookhaven National Laboratory 7-foot Bubble chamber

794

     D.P. Brown, R.W. Burgess, and G.T. Mulholland, Brookhaven National Laboratory

 

 

 

A 70 kilogauss Magnet for the Proposed Rutherford Laboratory 1.5 m Diameter Hydrogen Bubble Chamber

815

     P.T.M. Clee, D.B. Thomas, and C.W. Trowbridge, Rutherford Laboratory

 

 

 

Development Program for the Magnet of the European 3.7 m Bubble Chamber

828

    Presented by F. Wittgenstein, CERN

 

 

 

A Possible Source of Instability in “Fully Stabilized” Magnets

839

     P.F. Smith, M.N. Wilson, and J.D. Lewin, Rutherford Laboratory

 

 

 

Analytical Design of Superconducting Multipolar Magnets

843

     Richard A. Beth, Brookhaven National Laboratory

 

 

 

Superconducting Magnetic Dipoles

860

     G. Parzen, Brookhaven National Laboratory

 

 

 

Superconducting Quadrupole Focusing Lens – Part I: Analytical Design and Full-Scale Copper-Wound Pole

866

     A. Asner, CERN

 

 

 

Superconducting Quadrupole Focusing Lens – Part II: Construction and Preliminary Tests

880

     D.N. Cornish, Culham Laboratory

 

 

 

Quadrupole Focusing Magnet

886

     J.D. Rogers, W.V. Hassenzahl, H.L. Laquer, and J. K. Novak, Los Alamos National Laboratory

 

 

 

The Rutherford Laboratory Bending Magnet

888

     M.N. Wilson, R.V. Stovold, and J.D. Lawson, Rutherford Laboratory

 

 

 

Brookhaven Superconducting dc Beam Magnets

893

     R.B. Britton, Brookhaven National Laboratory

 

 

 

Pulsed Superconducting Magnets

908

     W.B. Sampson, Brookhaven National Laboratory

 

 

 

Intrinsically Stable Conductors

913

     P.F. Smith, M.N. Wilson, C.R. Walters, and J.D. Lewin, Rutherford Laboratory

 

 

 

Superconducting Magnets for Controlled Thermonuclear Research

920

     C.E. Taylor, Lawrence Radiation Laboratory, Livermore

 

 

 

On Helium II Microstabilization of Nb3Sn

926

     W.H. Bergmann, Argonne National Laboratory

 

 

 

Progress on the IMP Facility

929

     D.L. Coffey and W.F. Gauster, Oak Ridge National Laboratory

 

 

 

Standardized Tests for Superconducting Materials

944

     W.F. Gauster, Oak Ridge National Laboratory

 

 

 

Superconducting Magnets for the 200 GeV Accelerator Experimental Areas

946

     R.B. Meuser, Lawrence Radiation Laboratory, Berkeley

 

 

 

Construction of a Superconducting Test Coil Cooled by Helium Forced Circulation

953

     M. Morpurgo, CERN

 

 

 

Summary of Fifth Week of Summer Study

962

     W.B. Sampson, Brookhaven National Laboratory

 

 

 

SIXTH WEEK – ACCELERATORS AND STORAGE RINGS

USING SUPERCONDUCTING OR CRYOGENIC MAGNETS

 

Chairman: J.P. Blewett, Brookhaven National Laboratory

 

 (Photos)

 

Superconducting Synchrotrons

967

     P.F. Smith, Rutherford Laboratory

 

 

 

Economic Factors Involved in the Design of a Proton Synchrotron or Storage Ring with a Superconducting Guide Field

981

     M.A. Green, Lawrence Radiation Laboratory, Berkeley

 

 

 

A 2000 GeV Superconducting Synchrotron

998

     W.B. Sampson, Brookhaven National Laboratory

 

 

 

Synchrotron Power Supplies using Superconducting Energy Storage

1002

     P.F. Smith, Rutherford Laboratory

 

 

 

Some ac Loss Determinations by an Electric Multiplier Method

1007

     W.S. Gilbert, Lawrence Radiation Laboratory, Berkeley

 

 

 

Radiation Effects on Superconducting Magnets

1011

     H. Brechna, Stanford Linear Accelerator Center

 

 

 

Iron Shielding for Air Core Magnets

1042

     J.P. Blewett, Brookhaven National Laboratory

 

 

 

Superconducting EFAG Accelerators

1052

     G. Parzen, Brookhaven National Laboratory

 

 

 

Calculations Concerning Superconducting Accelerators

1059

     P. Gerald Kruger and J.N. Snyder, University of Illinois

 

 

 

Preliminary Steps for Applying Superconductors to FFAG Accelerators

1075

     G. del Castillo, R.J. Lari, and L.O. Oswald, Argonne National Laboratory

 

 

 

A Superconducting SLAC with a Recirculating Beam

1089

     W.B. Herrmannsfeldt, Stanford Linear Accelerator Center

 

 

 

Properties and Preparation of High-Purity Aluminum

1095

     V. Arp, National Bureau of Standards, Boulder

 

 

 

Synchrotron Magnets with Cryogenic Exciting Coils

1115

     G.T. Danby, J.E. Allinger, and J. W. Jackson, Brookhaven National Laboratory

 

 

 

Summary of Sixth Week of Summer Study

1127

     J.P. Blewett, Brookhaven National Laboratory

 

 

 

 Directly Jump to    1st Week        2nd Week      3rd Week     4th Week     5th Week     6th Week

 

Author Index


Table of contents as they appeared in the original proceedings.

Return to 1968 Proceedings Home Page