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Superconducting

Magnet Division

A few of many things that are involved in an overall design

of the superconducting magnet

*The magnet should be designed in such a way that the conductor remains in
superconducting phase with a comfortable margin.

*The superconducting magnets should be well protected. If the magnet quenches
(conductor looses its superconducting phase due to thermal, mechanical, beam
load, etc.), then there should be enough copper in the cable to carry the current to
avoid burn out.

* The cryogenic system to cool and maintain the low temperature (roughly at 4
Kelvin) for the entire series of magnets in the machine. It should be able to handle
the heating caused by beam, including that by synchrotron radiations or decay
particles.
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Superconducting

Magnet Division

*The magnet cost should be minimized.

*There are very large Lorentz forces in the superconducting
magnet. They roughly increase as the square of the field. The coil
should be contained 1n a well design support structure that can
contain these large forces and minimize the motion of conductor.
In high field magnets, the design of mechanical structure plays a
major role.

*The magnet should be designed in such a way that they are easy
to manufacture.

*They must meet the field quality (uniformity) requirements.
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b et Overall Magnetic Design
Superconducting (First cut - O™ order process)

Magnet Division

Coil Aperture

e Usually comes from accelerator physicists

e But also depends on the expected field errors in the magnet
o A feedback between accelerator physicists and magnet
scientists may reduce safety factors in aperture requirements

Design Field
e Higher field magnets make machine smaller

Reduce tunnel and infrastructure cost
But increase magnet cost, complexity and reduce reliability

e Determines the choice of conductor and operating temperature

Find a cost minimum with acceptable reliability.
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NATIONAL LABORATORY

Superconducting of superconducting (SC) magnets?

Magnet Division

Everywhere in the magnet, the conductor must remain below the
critical surface, while the field 1s maximized in the magnet aperture

Field must be uniform in the magnet aperture
Very uniform : Desired relative errors (typical value): AB/B ~ 104

Things that must be done to achieve the required field uniformity:
e Optimize conductor geometry
e Conductor must be placed accurately (~25 micron)
e Deal with non-linear magnetization of iron
e Reduce persistent currents (or use external correctors)

USPAS Course on Superconducting Accelerator Magnets, June 23-27, 2003 Slide No. 5 of Lecture III Ramesh Gupta, BNL



BROOKHEAEN Field in the Superconducting Coil
Superconducting in RHIC DiPOIC

Magnet Division

Note that the field
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Superconducting
Magnet Division

Maximizing Field in the Magnet Aperture:

Conductor 6Grading

Field on the conductor in two layer SSC dipole
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A higher current density (and hence higher central field)
is possible in the outer layer, as the field is lower.
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Superconducting | 1 he Maximum Field on The Superconductor

Magnet Division

The peak (maximum) field on the conductor is always more than the field at

the center of the dipole.

What happens in quad, where the field at the center is zero?

In a perfectly made superconducting dipole, the central field is limited by the

maximum field point in the superconducting coils.

B0O0O

*Typical values for a single layer coil design : 115% of B, ™ : NbTi -

*Typical values for a double layer coil design :
105% 1n inner, 85% 1n outer

current densily

L =2:10¢ A/Jmm?

pure titanium
Te =0.4K, B =001T

pure niobium
Te =9.2K,B.=019T

{emperature rmagnetic field

Figure 2.11: Sketch of the critical surface of NbTi. Also indicated are the regions where pure
niobium and pure titanium are superconducting., The critical surface has been truncated
in the regime of very low temperatures and fields where oaly sparse data. are available.

Superconductor

Je, AlmmA2
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Superconducting

Designs for

Ideal Fields

Magnet Division

Here are some current distributions, those
produce an ideal field.

Ideal field is the one where only one multi-
pole (dipole, quadrupole, etc.) is present and
all other harmonics are theoretically zero.

Intersecting ellipse

B
y

) M Isc

(b + ¢y -
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Cosine theta

I() = Io COS(mg)

Two intersecting circles
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NATIONAL LABORATORY DipOIQ fr‘om In'rel“SeCﬂng Cil“CleS
Superconducting
Magnet Division

. Two intersecting circles
Home Assignment: g

Prove, without using complex variables, that the geometry
shown on the right produces a pure dipole field in the t

current free region. (LI Rabi, 1984, Rev. Sci. Inst. & Method).

How will the component of field (Hx, Hy) and the
magnitude will fall outside the current region as a function

(%3 )

of (x,y) and (1,0)? Assume that the radius of circle is “a”.

Make an OPER2D or POISSON model of it and compute
field and field harmonics at a reference radius of 50 mm.

Assume a = 100 mm, s = 20 mm, J, = 500 A/mm?.

Repeat the same computations with an iron shell around it
with an inner radius of 150 mm and outer radius of 300 mm.
Do calculations with a fixed u = 5000, 1000, 100, 10, 2 and
1. Also do a calculations with variable u with default
material No. 2. How does the field fall outside the coil? and peak field on the conductor.

Truncate the model at the dashed
lines, as shown above, at
t=10mm. Compute harmonics
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Superconducting
Magnet Division

Estimated coil width for generating a dipole field of B,
W~ 2By/(1gdy)
where, J, is the operating current density and not the
current density in conductor (J.).
Class Problem: Compute the required conductor with for a5 T
dipole. Assume that the current density in the coil is 500 A/mm?.
How does the required conductor width varies with aperture?

How does the required conductor volume varies with the aperture?

Always check the B-J-T surface of the superconductor,

the operating point must stay well within.
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Superconducting fr'om 151. Pr'inCiple

Magnet Division
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Superconducting
Magnet Division

Field Quality optimization
from 1s* Principle

Cosine Theta
Elliptical Coil
Boundary condition
Field Parallel :
Conductor dominated,
Field Perpendicular :
Iron dominated
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Superconducting

Present Magnet Design and Technology

Magnet Division

stainless steel
helium vessel

iron yoke —___ ’r{
(vertical gap)

figid support

Figure 4.9: The Tevatron ‘warm-iron’ dipole (Tollestrup 1979)

HERA Dipole

main current bus

two-phase helium

= single-phase liquid
\

f— groove-and-tongue
interock of collar

i and yoke

beam pipe with
correction coil

helium

L. aluminium-alloy collar

_—weld joints of half yokes
" and half cylinders

*All magnets use NbTi
Superconductor

*All designs use cosine
theta coil geometry

Dipoles
Machine B(T) | Aper(mm)| Length(m) [ Number
Tevatron 4 76.2 6.1 774
HERA 4.68 75 8.8 416
- =S8G — }+ =67 = + = 80— =| = = 45— = + —7044
-=—UWNKk —F+ =5 =4 — F0— —|— — 58 —  —2466
RHIC 3.5 80 9.7 264
LHC 8.3 56 14.3 1232
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Must Allow Comfortable Margin

Superconducting
Magnet Division

RHIC PRODUCTION DIPOLE QUENCH TESTE

* In a large series production, there will be some

; 5 ] 1 ' -I.
. . i 1
magnets, if not most, that will not be able to reach ....-,,‘L}«-w A L e L]
the ideal field performance (short sample). L4 ] T
: T O i i
» Superconducting magnets for accelerators are, - | = ||| I i -
therefore, designed with some operating margin. ~ ° ' | EREE IR
. . | =] |1z lzlsl g |s|g|slds|olels] o = [2|elsle]
« RHIC magnets have over 30% margin. This f BT BB fpEsEEpEEEE E R
means that theoretically, they are capable of -
producing over 30% of the required/design field. R ——
. . . . [l TT] [ [TTTT 3
A successful design, engineering and production - HH ‘ ‘ ! T e
l:.“ ----"J"“-"“,., A,f»"’“,..,.{ o | ,,,-J;{...-!, :'-"l'd..,‘--.’-,,.:l.-_
means that most magnets reach near the short T l’ﬂ f»} fﬂ [ i ’ TT:
. B s [ | |
sample current (as measured in the short sample £ -] Pf | [[ e j
. E ] | [opee || : - 1
of the cable) or field in a few quenches. f =] ‘ AT
. : : g | IR IRERERENE ]
*Also, it 1s desirable that most reach the design =L ‘| AELLLL ‘ s
ne field with b Remember,  BimliRElii i
operating field without any quench. Remember, (EEEREERE B E BEREE £ 28 s g EERsEmmE T
the cost of cold test is high and it 1s desirable that PR e
we don’t have to test all magnets cold. Quench performance of RHIC magnets
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Superconducting

Magnet Division

This was an introduction to the magnet design.

The next lectures will go into more details of
designing magnets, with an emphasis on designing
magnets with a good field uniformity.
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