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First Nb3Sn Dipole Models

Several Nb3Sn short d ipole models were fabricated  and  tested
to demonstrate the possibility to reach the field  >10 T at 4.3 K.

Laboratory CERN        UT        LBNL
Aperture (mm) 50         50           50
Number of layers 2          2            4
Coil thickness (mm) 34         40           54
Design Bmax @4.3 K (T) 10.0        11.5         13.0
Test 1989               1995         1997

CERN/ELIN MSUT D20
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Design Parameters and  Criteria

Target design parameters and  requirements:
– nominal field : Bnom=10-12 T
– field  range: Bnom/ Binj=50TeV/ 3TeV=17  Binj=0.6-0.7 T
– good field  quality in the operation cycle: 1986 SSC specs
– sufficient physical & dynamic aperture: magnet bore >40 mm

Additional considerations:
– mechanical stability: coil support structure
– quench protection: minimal stored  energy, low inductance
– low cost: small coil & magnet x-sections, simple & inexpensive

technology
– applicability of design and  technological solution for full-scale magnets
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Magnetic Design Study

Cable        1.80x14.23mm 2                        1.46x15.4mm2

Strand  d iam. (mm)  1.0             1.0             1.0             0.81
Bore d iam. (mm) 50 45 40 40
Bss (T) 12.4 12.4 12.5 12.5
Energy@11T (kJ/ m) 289 256 221 230
Inductance (mH/ m)2.75 2.32 1.67 2.53
Coil area (cm2) 33.0 30.1 26.6 28.7
Pole width (mm) 17.5 16.2 15.0 14.6

���� bore diameter range 40-50 mm is OK
���� large cable is better

Cross-sections of coils with
bore diameter of 40-50 mm

Basic parameters:   2 layers cos-theta coil
coil thickness ~30 mm
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Cos-theta Coil Cross-Section

0 10

Rel. field errors

0     2    4     6     8    10   12   14   16   18   20

(x10E-5)

Strand :  Nb3Sn 1.00 mm
 Cu:nonCu=0.85:1
 Jc(12T, 4.2K)=2.0 kA/ mm 2

Cable:        28 strands
 14.24×1.80 mm2,
  Keystone angle 0.9 degree
  Packing factor 0.88

Insulation: Thick 2*0.125 mm
  (20-50% overlap)

Coil:    Two layers cos-theta
            Bore d iameter 43.5 mm
            24 turns (11+13)
Technique: Wind& react
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Single-Bore Cold-Yoke Design

- thin coil-yoke spacers (no collars)
- 2 pieces cold yoke with open vertical gap
- Al clamps and 10 mm thick SS skin
- nominal yoke OD 440 mm
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Double-Bore Cold-Yoke Design

- bore d iameter 43.5 mm (same coil block)
- bore separation 180 mm
- 3 piece cold  yoke with vertical gap
- yoke OD 520 mm ���� cryostat OD ~0.8-0.9 m
- 10 mm thick SS skin
- correction holes, gap along flux lines



VLHC Annual Meeting
16-18 October 2000

A. Zlobin
R&D of Cos-theta Nb3Sn High-Field Dipoles for VLHC

8

Double-Bore Warm-Yoke Design

- bore d iameter 43.5 mm
- bore separation 180 mm
- cold  mass size 385 mm
- thin SS skin
- yoke OD 580 mm = cryostat OD
- yoke thickness 40 mm
- asymmetric coils
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Short Sample Limit & Nominal Field

Critical current margin - 15%
Critical current degradation - 10%
Cu:nonCu ration - 1.2:1

Maximum field vs. Jc@12T in the coil
Cu:nonCu=0.85:1
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Single and double cold

Double w arm

    Cold yoke    Warm yoke
Jc(12T,4.2K), kA/mm2 Bnom, T      Bmax, T Bnom, T      Bmax, T
        2.2    10      11.5                    9.4       10.8
 3.0    11      12.7                   10.4         11.9

Bnom=11-12(cold yoke)/10-11 T(warm yoke)
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Field  Quality
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Systematic geometrical field errors @1 cm

Bx(x,y) and By(x,y) – horizontal and vertical field components; 
B1 – dipole (main) component; 
Ref - reference radius (Rref =1 cm); 
bn and an – normal and skew harmonic coefficients.

Field
harmonics

Cold
yoke*

Warm
yoke**

SSC
specs

b2 - 0.000 -
b3 0.000 0.000 0.008
b4 - 0.000 -
b5 0.000 0.001 0.018
b6 - -0.012 -
b7 0.000 -0.011 0.040
b8 - 0.031 -
b9 -0.091 -0.13 0.089

b10 - -0.011 -
*) Symmetric coil
**) Asymmetric coil
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Iron Saturation Effect

Quadrupole vs. bore field
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Summary:
- cold yoke design - holes, Rout
- warm yoke design - asymmetric coil, Rin

Transfer function vs. bore field
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Coil Magnetization Effect
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Summary:
Persistent currents:       - small deff<40µm, passive correction
Eddy current effects:    - strand: small lp~10-20 mm

      - cable:  large Ra (cable with SS or iron core)
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Mechanical Analysis

Peak equivalent stress in the coil (MPa)

Design         300K  4.2 K, 0T   4.2K, 12 T

Single cold  yoke       80     121       104
Double cold  yoke      120     132       125
Double warm yoke   132     118       121

Summary:
•coil stress: σeq<150 MPa and σaz>0 at all conditions
•coil bore deformation is small: ∆R<100 µm
•all structural elements work in elastic regime

4.2 K

11 T

300 K

1

2

3

4



VLHC Annual Meeting
16-18 October 2000

A. Zlobin
R&D of Cos-theta Nb3Sn High-Field Dipoles for VLHC

14

Quench Protection

Short model quench parameters:
Quench integral, MIIT 12
Tmax inner coil, K 180
Tmax outer coil, K 130
Vmax turn-turn, V 15
Vmax coil-ground, V 100

Summary:
•For long (10-15 m) magnets ���� Cu:nonCu=1.2:1
•Minimum heater energy: to be studied experimentally

    

Jcu~1.8-2.0 kA/mm2
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Research: Summary

The magnetic and  mechanical design of single and  double aperture d ipole
magnets for VLHC based  on the cos-theta coil geometry with cold  and  warm
iron yoke has been developed. All magnets met the target requirements:

• Bmax~10-11 T for commercially available Nb3Sn strands
• Bnom~11-12 T with 15% margin will be achieved using new R&D strands
• accelerator field quality is provided in the field range of 1-12 T. Field range can be

expended by reducing deff in R&D Nb3Sn strands and using simple passive correction
• chosen mechanical designs and the coil prestress level provides the coil mechanical

stability in the fields up to 11-12 T but safe for Nb3Sn strand.
• quench protection provided by the internal quench heaters. All quench parameters are

on the acceptable level. Some increase of the Cu content in full-scale coils is required.
The cos-theta magnets provide higher maximum field  in the same magnet bore,

have lower stored  energy and smaller coil volume than common coil magnets
The cos-theta design with warm yoke provides also significant reduction of

magnet size without a noticeable degradation of its characteristics
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Short Model Features

Design Features:
•Nb3Sn cable
•High temperature ceramic insulation
•Bronze End Parts and Pole Pieces
•Aluminum Spacers
•400 mm Vertically Split Iron Yoke
•Aluminum Clamps
•8 mm thick Stainless Steel Skin
•Stainless Steel Skin Alignment Key
•50 mm thick SS end plates

We use some tooling and magnet parts from the HGQ project

Technology:
•Wind and react technique
•No Interlayer Splice
•Simultaneous Reaction and Impregnation of two Half-Coils
•Coil prestress provided by both Al clamps and SS Skin
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Nb3Sn Cable

Nb3Sn cable optimization:
•different strands (IT, MJR, PIT)
•heat treatment
•packing factor
•inter strand resistance (SS core)

Ic degradation vs. cable packing factor @ 12 T
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Insulation

S-2 Fiber Glass Tape:
• affordable, traditionally being used to insulate Nb3Sn cable
• involves lot of pre-processing
• was very weak to be used with an automated  wrapping

machine
• was improved in collaboration with a weaving company

by orienting the fibers in the favorable d irection
• were recently successfu l in using S-2 glass tape w/ o any

organic binder

Ceramic Fiber Tape:
• does not contain any organic binder
• is strong enough to use for wrapping around the cable
• expensive

Ceramic Binder (CTD Inc.):
• is an inorganic adhesive
• used to improve cable insulation stiffness before coil

winding and to form the coils into right shape during coil
curing.

Cable insulation using the
Insulation Wrapping Machine
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25º

10º

BEND suggested angle = 43.2°

End Part Optimization

C o s t  f o r  4
s e t s

( 8 4  p a r t s )

C o s t
p e r  p a r t

M a c h i n i n g
T i m e

( m i n u t e s )

5 - a x i s  m i l l i n g 3 2 , 0 0 0 3 8 0 6 0 - 1 2 0
5 - a x i s  w a t e r j e t

m a c h i n i n g
1 4 , 0 0 0 1 6 0 1 0 - 1 5

Summary:
•Rapid prototyping techniques reduce the time and cost of end part optimization process.
•Emerging technologies such as water jet machining promise of significant reduction of
the end part fabrication cost.
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Coils Winding and  Curing

445.4 mm 343.8 mm210.8 mm

Two half coils ready to be reacted

Inner layer winding
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Coil Reaction

Coils Assembled in the Reaction Fixture

Reaction cycle:
575 oC for 200 h followed by 700 oC for 40 h
with a ramp rate of 25 oC/h

Good bonding between the turns after reaction
(allows to handle the coil easily and even perform
size measurements under pressure)

Coil after reaction



VLHC Annual Meeting
16-18 October 2000

A. Zlobin
R&D of Cos-theta Nb3Sn High-Field Dipoles for VLHC

22

Epoxy Impregnation

Impregnation set up

Impregnated Coil 

Impregnation:
•epoxy CTD 101K
•time 5 h

Curing: 
•temperature 125oC 
•duration 20 h 
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Mechanical Measurements
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Azimuthal Size Variation

Summary: Azimuthal size of the coils should be  less than nominal
•Reduces the compaction of coils in the reaction fixture
•Coil will grow to the nominal size after reaction

Inductance
µµµµH

Quality
Factor

Resistance
mΩΩΩΩ

BEFORE REACTION
First Half Coil 232.4 6.01 56.5

Second Half Coil 236.4 6.36 62.8
AFTER REACTION

First Half Coil 94.3 0.93 78.6
Second Half Coil 200.8 2.68 81.9

Coil Azimuthal Size: increased after reaction by 0.7 mm
Coil Length Variation: increased by 9mm after reaction
Observation: - turn-to-turn shorts in the first half coil

 - tin leakage in the coils.
Possible Cause: - strand/cable mechanical defects,
                          - removal of low temperature (200 oC) step

        from the reaction cycle
     -  high compaction of coils in the fixture
        before reaction.

Electrical Measurements
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Coil and  Yoke Assembly

Short model assembled with iron yoke
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Mechanical Model

Coil block Yoked 
Mechanical
Model 

Coil
Pole

Spacer
Mid-Plane     Pole

Model
Under Press 154 88 152
Under Press + Clamp 156 91 161
After Spring back 32 40 51

Analysis
Under Press 145 122 156
After Spring back 40 43 50

Mechanical calculations and measurements correlate quite well.

Azimuthal Stress Measurements (MPa)
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Development: Short Model Program Status

The developed  coil design and  fabrication technique resulted  in a coil
with good mechanical properties.

Coil size and  reaction process needs to be optimized  to eliminate over-
sizing, tin leaks and  turn-to-turn shorts.

The magnet assembly procedure and  the ANSYS  analysis have been
verified  using short model assembly and  mechanical models

Fabrication of new coils for the first short model is in progress and  we
expect to complete the production in January 2001 and  test it in
February 2001.

Fabrication of cable for second and  third  short models is scheduled  for
November. Magnet fabrication will starts in December 2000.

Second model tests are expected  in May 2001.
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