

<u>Flat beams and optics</u> S. Peggs

- Equilibrium emittance, half cell length L_{hc}
- Luminosity performance
- Doublets or triplets?
- Beam-beam: head on and long range
- Intra Beam Scattering
- Inject flat beams?
- Conclusions

Equilibrium emittance, half cell length L_{hc}

- VLHC (unlike SSC) has a "non-zero" equilibrium horizontal emittance $\epsilon_x \sim B^3 L_{hc}^3 \gamma^0$, where half cell length $L_{hc} \approx 260$ m.
- There is *some* freedom in selecting both ϵ_x , and the equilibrium emittance ratio $\kappa = \epsilon_y/\epsilon_x \approx 0.1$.
- Are flat beams an advantage, or a liability?

S. Peggs

• The **magnet technology** could well limit L_{hc} and ϵ_x from above, eg through arc dipole systematic harmonics at injection

Luminosity performance

For flat beams, assume that

$$\kappa = \frac{\epsilon_y}{\epsilon_x} = \frac{\beta_y^*}{\beta_x^*} = \frac{\sigma_y^*}{\sigma_x^*} \ll 1 \tag{1}$$

so that the *flat* beam-beam tune shift parameter

$$\xi = \xi_x = \xi_y \approx \frac{N}{\epsilon_x} \frac{r}{2\pi\gamma} \tag{2}$$

and the flat luminosity is simply

$$L = \frac{M\xi^2 \sigma_x^{\prime*2}}{\kappa} \left(\frac{\pi F \gamma^2}{r^2}\right) \tag{3}$$

where the term in brackets is "constant".

The maximum value of the horizontal rms angular beam size σ'^*_x is set by the IR quadrupole optics – doublet or triplet? SUPPOSE that $8\hat{\sigma}_x$ must fit in the quadrupole bore radius a, at the maximum beta location where

$$\widehat{\beta}_x \equiv \frac{\widehat{L}_x^2}{\beta_x^*} \tag{4}$$

THEN simply

$$\sigma_x^{\prime*} \le \frac{a}{8\widehat{L}_x} \tag{5}$$

and so luminosity scales like

$$L \sim \frac{1}{\kappa} \left(\frac{a}{\widehat{L}_x}\right)^2 \tag{6}$$

ALTERNATIVE IR OPTICS (with different κ values) should be compared on the basis of their effective optical distances, \widehat{L}_x .

The same 4 quads (G = 500 T/m !) as a triplet ($\kappa = 1, \tilde{L}x = 74 \text{ m}$) on the left, and as a doublet ($\kappa = 0.05$, $\widehat{L}_x = 119$ m) on the right. The doublet outperforms the triplet by a factor of $20*(74/119)^2 = 7.7$ (but ...)

One quad is "off" in the doublet.

Store evolution using *almost* the same parameters as Mike Harrison ...

Energy, E_s	50.0	TeV
Peak luminosity, L	10^{34}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$
Circumference, C	89.0	km
Dipole field, B	12.5	Т
Number of bunches, M	20,000	
Initial bunch intensity, N	$12.5 \mathrm{x10^9}$	
Half cell length, L	260	m
Number of collision points	2	
Collision betas, β_x^* , β_y^*	5.0, 0.5	m
Natural emittance ratio, κ	0.1	
Full crossing angle, α/σ'^*_y	10.0	
Separation distance, L_{sep}	50.0	
Bunch spacing	4.45	m
Stored energy	2.00	GJ
Synchrotron radiation power	492	kW
Dipole heat load	5.87	W/m
Damping time, $ au_0$	2.26	hr
Norm. rms H emittance, ϵ_x	0.59	$\mu { m m}$
Natural mmtm. spread, σ_p/p	$5 \mathrm{x10^{-6}}$	

Beam-beam tune shift parameter ξ

Horizontal and vertical ξ 's are well behaved.

How about long-range beam-beam?

Long Range Beam-beam

The VERTICAL long range tune shift ΔQ_y is much larger than the horizontal:

$$\Delta Q_x \approx -\kappa \Delta Q_y \approx n_{LR} \frac{\xi_y}{(\alpha/\sigma'_y)^2}$$
 (7)

A superficial(?) flat beam disadvantage!

Intra Beam Scattering

- The beam is heated longitudinally to maintain $\sigma_p/p \ge 10^{-4}$, avoiding stronger IBS effects.
- Recall: the natural damping time $\tau_0 = 2.26$ hr.
- IBS damps the vertical and grows the horizontal emittance another (mild) source of flat beams!

Inject flat beams?

Can a transfer line make a round beam flat? NO.

It can be shown that AT BEST, emittances ϵ_1, ϵ_2 in the injector become ϵ_x, ϵ_y in the high energy ring, where

$$\epsilon_x = c^2 \epsilon_1 + s^2 \epsilon_2 \tag{8}$$

$$\epsilon_y = s^2 \epsilon_1 + c^2 \epsilon_2 \tag{9}$$

where $c = \cos(\psi), s = \sin(\psi)$, and ψ is tunable.

If $\epsilon_1 = \epsilon_2 = \epsilon$, then at best a round beam remains round, with no emittance blow up!

Conclusions

- 1. Flat beams produce denser bunches, allowing larger β^* values, and leaving room for further performance enhancement.
- 2. Luminosities in the range of 10^{35} cm⁻²s⁻¹ may be considered by reducing β^* values.
- 3. Flat beams permit doublet IR optics, with more modest magnetic strength demands, lower maximum betas, easier beam separation, and tolerable long range tune shifts.
- 4. Intra Beam Scattering also flattens the beam. Longitudinal beam heating is required.
- 5. Transfer lines cannot make round beams flat except through emittance blow-up!