Office Contact Info.
Phone: (631) 344-3715
Fax: (631) 344-2358
Mail address: Bldg. 490
|
Research Interests
- Experimental radiation therapy with arrays of x-ray and heavy-ion microbeams
- Diffraction-enhanced Imaging
- MicroCT
- Experimental radiation therapy with dose-enhancing agents
- My main line of research is microbeam radiation therapy, an experimental method that uses arrays
of parallel, thin planes of radiation. The work started by my colleagues and I in 1990 using arrays
of x-ray microbeams ~0.03 thick from the National Synchrotron Light Source (NSLS). Microbeams’ tolerance
at very high doses by normal tissues, including the central nervous system (CNS), produced great hope for
radiation therapy with lower impact on the normal tissues surrounding the target. Soon afterwards similar
research started at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. In the early 2000s
my colleagues and I at the NSLS showed that x-ray microbeams as thick as 0.68 mm still retain much of their
tissue-sparing effect. We then administered thick microbeams in “interlaced” geometry where two arrays aimed
at the target from 90 degrees interlace to produce a solid radiation field at the target. Furthermore, we
investigated the effect of microbeams on the glial system, and, more recently, we studied the effects on tissues
of heavy ion microbeams produced by the NASA Space Radiation Laboratory (NSRL). I have also been a pioneer in
the implementation of computed tomography (CT) with synchrotron-generated monochromatic x-ray beams, and in the
implementation in the CT mode of "Diffraction-Enhance Imaging (DEI)", a method that was earlier developed by my colleagues
at the NSLS; since then I have been collaborating with the BNL’s DEI group in different applications. Finally, I have been
collaborating with other BNL scientists on the imaging capabilities of microCT scanners, and with other colleagues on the
use of dose-enhancing agents in experimental radiation therapy.
Education & Concurrent Positions
- B.Sc. Technion, Israel Institute of technology, 1970
- M.Sc. Technion, Israel Institute of Technology, 1973
- Ph.D. Massachusetts Institute of Technology, 1980
- Postdoctoral Research Associate, Washington University, 1980-1983
- Scientist, Medical Department, Brookhaven National Laboratory, 1992-present
- Associate Professor of Research, Department of Radiation Oncology,
State University of New York at Stony Brook, 2007-present
Selected Publications
-
Hainfeld J.F., Dilmanian F.A., Zhong Z., Slatkin D.N., Kalef-Ezra J.A., and Smilowitz H.M.
Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma.
Phys. in Med. Biol., 55(11):3045-3059 (2010).
PubMed
-
Hainfeld J.F., O’Connor M.J., Dilmanian M.J., Slatkin D.N., Adams D.J., and Smilowitz H.M.
MicroCT enables microlocalization and quantification of Her2-targeted gold nanoparticles within tumor regions.
British J. of Radiology, (2010). [Epub ahead of print]
PubMed
-
Connor D.M., Benveniste H., Dilmanian F.A., Kritzer M., Miller L.M., and Zhong Z.
Computed tomography of amyloid plaques in a mouse model of Alzheimer’s disease using diffraction enhanced imaging.
Neuroimage, 46(4):908-914 (2009).
PubMed
-
Dilmanian F., Romanelli P., Zhong Z., Wang R., Wagshul M. E., Kalef-Ezra J., Maryanski M. J., Rosen E. M., Anschel D.J.
Microbeam radiation therapy: Tissue dose penetration and BANG-gel dosimetry of thick-beams array interlacing.
European Journal of Radiology, 68(3):S129-36 (2008).
PubMed
-
Hainfeld, J., Dilmanian, F.A., Slatkin, D.N., Smilowitz, H.M.
Radiotherapy enhancement with gold particles.
Journal of Pharmacy and Pharmacology, 60(8):977-985 (2008).
PubMed
-
Huo Q., Yuasa T., Akatsuka T., Takeda T., Wu J., Thet-Lwin T., Hyodo K., Dilmanian F.A.
Sheet-beam geometry for in vivo fluorescent x-ray computed tomography: proof-of-concept experiment in molecular imaging.
Optics Letters , 33(21):2494-2496 (2008).
PubMed
-
Anschel D.J., Romanelli P., Benveniste H., Foerster B., Kalef-Ezra J., Zhong Z., and Dilmanian F.A.
Evolution of a Focal Brain Lesion Produced by Interlaced Microplanar X-rays.
Minim. Invas. Neurosurg., 50(1):43-46 (2007).
PubMed
-
Dilmanian F.A., Qu Y., Feinendegen L.E., Peña L.A., Bacarian T., Henn F.A., Kalef-Ezra J., Liu S., Zhong Z., and McDonald J.W.
Tissue-sparing effect of x-ray microplanar beams particularly in the CNS: Is a bystander effect involved?
Exp. Hematol., 35(4 suppl. 1):69-77 (2007).
PubMed
-
Dilmanian F.A., Zhong Z., Bacarian T., Benveniste H., Romanelli P., Wang R., Welwart J., Yuasa T., Rosen E.M., and Anschel D.J.
Interlaced X-ray Microplanar Beams: A Radiosurgery Approach with Clinical Potential.
Proc. Nat’l Acad. Sci. USA, 103(25):9709-9714 (2006).
PubMed
-
Dilmanian F.A., Qu Y., Liu S., Cool C.D., Gilbert J., Hainfeld J.F., Kruse C.A., Laterra J., Lenihan D., Nawrocky M.M., Pappas G., Sze C.I., Yuasa T., Zhong N., Zhong Z., and McDonald J.W.
X-ray Micro-beams: Tumor Therapy and Central Nervous System Research.
Nucl. Instrum. Meth. Phys. Res. A, 548(1-2):30-37 (2005).
PubMed
-
Zhong N., Morris G.M., Bacarian T., Rosen E.M., and Dilmanian F.A.
Response of rat skin to high-dose unidirectional X-ray microbeams: a histological study.
Radiat. Res., 160:133-142 (2003).
PubMed
-
Dilmanian F.A., Morris G.M., Zhong N., Bacarian T., Hainfeld J.F., Kalef Ezra J., Brewington L., Tammam J., and Rosen E.M.
Murine EMT-6 carcinoma: high therapeutic efficacy of microbeam radiation therapy.
Radiat. Res., 159:632-641 (2003).
PubMed
-
Dilmanian F.A., Button T.M., Le Duc G., Zhong N., Peña L.A., Smith J.A.L., Martinez
S.R., Bacarian T., Tammam J., Ren B., Farmer P.M., Kalef-Ezra J., Micca P.L., Nawrocky
M.M., Niederer J.A., Recksiek F.P., Fuchs A. and Rosen E.M.
Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy.
Neuro-Oncology, 4(1):26-38 (2002).
PubMed
-
Dilmanian F.A., Morris G.M., Le Duc G., Huang X., Ren B., Bacarian T., Allen J.C.,
Kalef-Ezra J., Orion I., Rosen E.M., Sandhu T., Sathé P., Wu X.Y., Zhong
Z. and Shivaprasad H.L.
Response of avian embryonic brain to spatially segmented x-ray microbeams.
Cell. Mol. Biol., 47(3):485-493 (2001).
PubMed
-
Dilmanian F.A., Zhong Z., Ren B., Wu X.Y., Chapman L.D., Orion I. and Thomlinson W.C.
Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method.
Phys. Med. Biol., 45(4):933-946 (2000).
PubMed
-
Laissue J.A., Geiser G., Spanne P.O., Dilmanian F.A., Gebbers J.-O, Geiser M., Wu X.Y.,
Makar M., Micca P., Nawrocky M., Joel D.D. and Slatkin D.N.
Neuropathology of ablation of rat gliosarcoma and contiguous brain tissue using a microplanar beam of synchrotron- wiggler
generated x-rays.
Int. J. Cancer, 78(5):654-660 (1998).
PubMed
-
Dilmanian F.A., Wu X.-Y., Parsons E.C., Ren B., Kress J., Button T.M., Chapman L.D.,
Coderre J.A, Giron F., Greenber D., Krus D.J., Liang Z., Marcovici S., Petersen M.J.,
Roque C.T., Shleifer M., Slatkin D.N., Thomlinson W.C., Yamamoto K. and Zhong Z.
Single- and dual-energy CT with monochromatic synchrotron x rays.
Phys. Med. Biol., 42(2):371-387 (1997).
PubMed
-
Slatkin D.N., Spanne P., Dilmanian F.A., Gebbers J.-O. and Laissue J.A.
Subacute neuropathological effects on rats of microplanar beams of x rays from a synchrotron wiggler.
Proc. Natl. Acad. Sci., 92(19):8783-8787 (1995).
PubMed
-
Dilmanian F.A.
Computed Tomography with Monochromatic X Rays.
Am. J. Physiol. Imaging, 7(3-4):175-193 (1992).
PubMed

Last Modified: March 10, 2011 Please forward all questions about this site to:
Denise Monteleone
|