
Technical Report

k-Space based summary motion detection for functional
magnetic resonance imaging

Elisabeth C. Caparelli,a,* Dardo Tomasi,a,b Sheeba Arnold,a

Linda Chang,a and Thomas Ernsta

a Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA
b Escuela de Ciencia y Tecnologia, Universidad Nacional de General San Martin, Alem 3901, 1651 V. Ballester, Buenos Aires, Argentina

Received 13 January 2003; revised 16 May 2003; accepted 29 May 2003

Abstract

Functional MRI studies are very sensitive to motion; head movements of as little as 1-mm translations or 1° rotations may cause spurious
signals. An algorithm was developed that usesk-space MRI data to monitor subject motion during functional MRI time series. Ak-space
weighted average of squared difference between the initial scan and subsequent scans is calculated, which summarizes subject motion in
a single quality parameter; however, the quality parameter cannot be used for motion correction. The evolution of this quality parameter
throughout a time series indicates whether head motion is within a predetermined limit. Fifty functional MRI studies were used to calibrate
the sensitivity of the algorithm, using the six rigid-body registration parameters (three translations and three rotations) from the statistical
parametric mapping (SPM99) package as a reference. The average correlation coefficient between the new quality parameter and the
reference value from SPM was 0.84. The simple algorithm correctly classified acceptable or excessive motion with 90% accuracy, with the
remaining 10% being borderline cases. This method makes it possible to evaluate brain motion within seconds after a scan and to decide
whether a study needs to be repeated.
© 2003 Elsevier Inc. All rights reserved.
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Introduction

Functional MRI (fMRI) with blood oxygenation level
dependence (BOLD) contrast relies on the detection of
signal changes as a result of brain activation. T2*-weighted
images are commonly used because they are most sensitive
to the BOLD effect. However, even under optimal condi-
tions and high magnetic field strengths, BOLD signal
changes are very small (typically 1–5%), so that head mo-
tion may easily corrupt the results of activation studies
(Friston et al., 1996). Therefore, it is important to realign
fMRI time series prior to statistical analysis. However, even
with motion correction, the range of acceptable motion is on

the order of a few millimeters of translation and a few
degrees of rotation, and scans with a greater range of motion
are rejected by many research groups. With such a small
range of acceptable motion, a significant amount of indi-
vidual scans, or even entire scanning sessions, may have to
be discarded, especially in fMRI studies of children or sick
adults.

One potential solution to this problem is motion correc-
tion in real time, using changes in reconstructed images
from scan to scan to calculate and correct for motion in
subsequent scans. Because fMRI studies are performed with
repetition times of a few seconds, these real time methods
require powerful computers to determine motion parameters
in real time and may only work for small movements. For
example, a recent publication presented an improved
method where translations up to 2 mm could be partially
corrected in real time (Mathiak and Posse, 2001). Another
approach is to determine motion from a navigator echo scan
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that is acquired before each volume scan. The use of three
orthogonal orbital k-space trajectories was found to be in-
accurate for z-translations above 1 mm and coronal rotations
greater than 1.5° (Ward et al., 2000). More recently, a 3D
spherical navigator echo has been proposed, which samples
a spherical shell of k-space centered at the origin and which
allows accurate determination of displacements up to 5 mm
and 6° (Welch et al., 2002).

Even if large movements can be determined accurately,
current prospective and retrospective motion correction
techniques generally correct only for geometric rigid-body
effects, although recent approaches also remove some geo-
metric distortions due to motion (Jenkinson et al., 2002).
However, subject motion may also cause nongeometric and
generally nonlinear changes in the BOLD signal, such as
changes in effective shim due to motion (Thesen et al.,
2000; Jezzard and Balaban, 1995), temporary changes in the

spin history (Friston et al., 1996; Robson et al., 1997), and
changes in local susceptibility due to motion (Wu et al., 1997).
Furthermore, real time motion correction algorithms are not
generally available yet. Therefore, current in vivo fMRI studies
are limited to scans with very small degrees of motion.

During the course of several ongoing fMRI studies, we
found that a significant number of scans (over 50%) did not
meet our internal quality criteria of 1-mm translations and
1° rotations. Because existing motion-estimation algo-
rithms, such as that in the SPM package (Friston et al.,
1995), are currently too slow to estimate motion in real
time, many fMRI studies were lost or required repeat scans
on different days. Therefore, a fast, noniterative algorithm
was developed to quantify subject motion immediately after
each scan. Furthermore, because our experimental MRI
system does not provide real time image reconstruction, the
motion-estimation algorithm uses the raw (k-space) data. The

Fig. 1. (A) 2D square matrix of size M � M; (B) The same data matrix showing the four square corner regions (size M/3 � M/3) that are used to calculate
the quality measures A(t) and A�(t) defined in Eqs. (7) and (8).

Fig. 2. (A) Original image using full k-space; (B) Image reconstructed using modified k-space data, with the center of k-space zeroed according to Fig. 1B.
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algorithm calculates a single quality parameter for each time
point, by determining a k-space weighted squared difference
between the first and each of the subsequent time points,
which summarizes and quantifies subject motion. Using 50
in vivo fMRI scans, the motion parameter was calibrated
relative to the six motion parameters from SPM99 to indi-
cate scans with subject motion above 1-mm translations or
1° rotations.

Methods

True motion parameters for fMRI time series, such as the
three translations and three rotations describing rigid-body
motion, can be determined with registration techniques.
However, registration algorithms are computationally ex-
pensive and difficult to perform in real time. Because we
were only interested in a quality measure of motion, not
geometric motion parameters per se, the goal was to derive
a scalar value that is sensitive to motion and can be calcu-
lated directly from k-space data.

Difference MR images (after reconstruction) that reflect
pixel-by-pixel changes in signal intensity over time are very
sensitive to motion, and increased motion generally results
in greater differences. Due to the linearity between complex
image space and k-space, the same should be true for k-
space data. Small amounts of motion (subpixel or on the
order of a few pixels) generally enhance image areas in
physical space that show rapid spatial variations in image
intensity, whereas areas with slowly varying image intensity
are relatively unaffected by small movements. Correspond-
ingly, in k-space, small amounts of motion should mostly
affect the outer components of k-space, but leave the center
of k-space relatively intact. This can be shown mathemati-
cally. If I(x) represents the frequency (physical) domain
signal at planar position x � (x, y), i.e., the “ image,” and
�0(k) the respective time domain signal with k � (kx , ky),
then the 2D Fourier transform that relates I(x) and �0(k) is
given by (Gradshteyn and Ryzhik, 1980)

�0(k) �
1

2��
��

�

I�x�exp	ik · x
dx. (1)

If we assume that the motion is rigid-body and is instantaneous
(that is, does not occur during readout), the signal �(k, h, �) for
a rotated and displaced image I(�(�)x � h) can be written as

�(k, h, � )

�
1

2� �
��

�

I(��� �x � h)exp{ik · x}dx

�
1

2� �
��

�

I�x�exp	ik · ��1(�)(x � h�}dx, (2)

where h � (hx, hy) is a time-dependent displacement vector

and ��� � � � cos� sin�
�sin� cos�� is a time-dependent rotation

matrix.
For small rotations (� �� 1), ��1(�) � � � ��,

where � is the 2 � 2 identity matrix and

� � � 0 �1
1 0 � and thus

��k, h, � � �
exp{ik · h}exp{i�k · �h}

2� �
��

�

I�x�

� exp	i�k · �x
exp{ik · x}dx. (3)

Of note, translations h affect only the phase, but not the
amplitude, of the k-space signals, whereas rotations affect
both the phase and the amplitude. If we additionally assume
small displacements (k � h �� 1), and include only first-
order terms in k, �, and h, we obtain

��k, h, � � � �1 � ik · h��0�k� � i�k · �1�k�, (4)

where

�1�k� �
1

2� �
��

�

I�x��xexp{ik · x}dx. (5)

Fig. 3. Correlation coefficients between each of the two proposed motion
detector measures, A(t) and A�(t), and the total of SPM parameters, S(t), for
all 50 fMRI studies. The arrows indicate the specific time series that are
displayed in Figs. 4 and 5.
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As a result, the relative signal change for a given point in
k-space is

��k, h, � � � �0�k�

�0�k�
� ik · �h � �

�1�k�

�0�k�� . (6)

This proves that the relative signal change at the center of
k-space is negligible for small enough movements � and h.

Therefore, we hypothesized that a k-space based measure
representing small movements might be designed by eval-
uating the difference in raw data between time points, with
exclusion of the center lines and columns of the k-space,
since the regions are insensitive to small movements ac-
cording to Eq. (6). Specifically, the k-space (size M � M)
was divided into nine identical squares (each of size M/3 �
M/3), and only the four “corners” were included in the
calculation (Fig. 1). As expected, images reconstructed with
this modified data matrix (with center rows and columns set
to zero) essentially contain information only close to the
edges (Fig. 2).

To quantify the amount of movement in a time series of

3D acquisitions, we define the quality measure A(t), which
reflects the sum of squared differences between a data set
acquired at time t and a reference data set acquired at t � 0,
normalized by the sum of squares of all elements of the
reference data set:

A�t� �

�
k��N/ 2

N/ 2 �
i, j��M/ 2

M/ 2

��i, j�� kijk�t� �  kijk�0� �2

�
k��N/ 2

N/ 2 �
i, j��M/ 2

M/ 2

��i, j� kijk�0� 2

,

(7)

with

��i, j� � �0 for � M/6 � i � M/6
or � M/6 � j � M/6

1 else
.

Here,  kijk (t)  is the absolute value of each element of the
3D raw data matrix, which consists of N slices of an M �

Fig. 4. (A) Evolution of the quality parameters A(t) and A�(t) (defined in Eqs. (7) and (8)) and the total of SPM result, S(t), during a scan with acceptable
motion; A�(t) and S(t) are rescaled. (B) and (C) show the six parameters for translation and rotation determined by the SPM registration package.
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M k-space matrix. We also evaluated an alternative form of
the quality function, A�(t), in which the difference between
elements of k-space was computed using complex values:

A��t� �

�
k��N/ 2

N/ 2 �
i, j��M/ 2

M/ 2

��i, j� kijk�t� � kijk�0� 2

�
k�N/ 2

N/ 2 �
i, j��M/ 2

M/ 2

��i, j� kijk�0� 2

. (8)

Because A(t) and A�(t) reflect motion on a scale that is not
intuitively related to true motion, it is necessary to “cali-
brate” the quality measures (A(t) and A�(t)) with respect to
“ true” motion parameters (rotations and translations). As a
measure of true motion for each time point, S(t), we decided
to calculate a weighted sum of the absolute parameters for
a rigid-body transformation, which were obtained from the
SPM realignment routine:

S�t� � �
i�1

3

 xi�t� � � �i�t� , (9)

where the xi represent x, y, and z translations, �i represent x,
y, and z rotations, and � adjusts the relative weight between
translations and rotations. Because our goal was to obtain 1
mm and 1° as cutoff, we conveniently set � � 1 (i.e.,
identical weight).

To determine whether the proposed quality measures
A(t) and A�(t) can be used as an indicator for excessive
motion, a set of 50 in vivo fMRI studies was analyzed. All
scans were from subjects participating in an fMRI study that
was approved by our local institutional review board. fMRI
was performed on a 4-T Siemens/Varian MRI system, using
a single-shot coronal gradient-echo EPI sequence (TR �
3000 ms, TE � 25 ms, FOV � 20 � 20 cm, 64 � 64 matrix
size, 4-mm slice thickness, 1-mm gap, typically 33 slices).
Each fMRI study contained 120 time frames, for a total raw
data size of 130 Mb. All calculations were performed using
the interactive data language (IDL, Research System, Inc.,
Boulder, CO). On a Compaq Alpha workstation XP 1000,
the function A(t), or A�(t), for the time series described
above, can be calculated in 5 s.

In order to obtain the S(t) parameter described in Eq. (9),

Fig. 5. (A) Evolution of the quality parameters A(t) and A�(t) (defined in Eqs. (7) and (8)) and the total of the SPM result, S(t), during a scan with excessive
motion; A�(t) and S(t) are rescaled. (B) and (C) show the six parameters for translation and rotation from the SPM registration package.
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EPI images were reconstructed in IDL using a Hamming
filter and a phase correction method that produced minimal
ghost artifacts (Buonocore and Gao, 1997). The entire re-
construction step for an fMRI time series takes approxi-
mately 40 s. The reconstructed images were converted into
SPM format, using AVS (Advanced Visual Systems, Inc.,
Waltham, MA). SPM99 was then used to realign the fMRI
time series and to determine the six rigid-body motion
parameters for calculating S(t).

Results

The correlation between A(t), or A�(t), and S(t) was
excellent for the majority of the 50 fMRI studies evaluated
(Fig. 3), with an average correlation coefficient of r � 0.84.
The correlations were slightly better with a larger range of
motion; for example, 85% of the 26 cases with unacceptable
motion (�1 mm and �1°) had r � 0.8, versus 62% of the

24 cases with acceptable motion (�1 mm and �1°). How-
ever, excellent correlations (up to r � 0.9) were observed
even for scans with very small motion. It is unlikely that this
high degree of correlation is an artifact of activation-in-
duced registration bias that has been observed for the SPM
motion correction package (Freire et al., 2001, 2002). First,
registration bias in SPM is significant for spatial smoothing
with a full-width half maximum 	8 mm, whereas our spa-
tial smoothing (during image reconstruction) was approxi-
mately 2.5 mm. Second, our motion indicators did not show
stimulus-related motion even when the range of motion was
very small; for instance, Fig. 4 shows a scan with minimal
motion but no correlation between A(t) or A�(t) and the
stimulus profile (three activated and three resting periods of
20 time points each).

Figs. 4 and 5 exemplify the results from a scan with
acceptable motion (translations �1 mm and rotations �1°
on any axis; Fig. 4) and a scan with excessive motion
(translations �1 mm and rotations �1° on all axes; Fig. 5).
It is obvious that A(t) and A�(t) can be closely associated

Fig. 6. Graph of S(t) vs A(t) for 6000 time points from 50 fMRI scans. I, correctly classified time points with motion �1 mm and �1°; II, correctly classified
time points with motion �1 mm or �1°; III, time points with incorrect classification by the motion detector method (N � 278).
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with one of the six SPM parameters in some cases (Fig. 5;
A(t) closely follows y translation and pitch), whereas this
association becomes less obvious for other cases (Fig. 4).
These two examples highlight the fact that the main goal is
to derive a single parameter that indicates whether subject
motion is acceptable or not, regardless of whether the un-
derlying movement is a rotation or a translation, or of the
specific axis of the movement.

Although Eq. (3) demonstrates that the quality function
A(t) is insensitive to in-plane translations, little qualitative
differences were found between A(t) and A�(t). This appar-
ent discrepancy is probably due to the fact that head trans-
lations in human fMRI studies are generally accompanied
by rotations. Therefore, since S(t) was better correlated with
A(t) than A�(t) for almost all cases (see Fig. 3), only A(t) will
be used for the remainder of the paper.

The good correlation between the quality parameter A(t)
and the reference motion factor S(t) from SPM suggests that
it might be possible to define a single threshold value for
A(t) that classifies motion for a given scan to be acceptable
or excessive. After evaluating S(t) and A(t) for all 50 fMRI
time courses, A(t) � 0.15 was found to be the best indicator
of excessive motion. Furthermore, we required a 10% tol-

erance in determining whether motion is excessive, where
the tolerance 
 is calculated as follows:


 �

�
t

B�t�

�
t

A�t�
(10)

for

B�t� � �A�t� if A�t� � 0.15

0 if A�t� � 0.15
.

The use of the tolerance minimizes the frequency of false-
negative cases in which the motion exceeded the threshold
just marginally and for a few select time points.

The calibration of the motion detector was performed to
accept or reject entire time series. Nevertheless, the pro-
posed threshold provides good classification for single time
points with regard to acceptable versus excessive motion; in
fact, over 95% of all 6000 individual time points were
classified correctly (Fig. 6). Furthermore, most individual
points with incorrect individual classification belong to time
series that were correctly classified by our method.

Fig. 7 demonstrates the practical use of the motion de-
tector method. The line in each graph represents A(t), and

Fig. 7. Evolution of the quality parameter A(t) during fMRI time courses. The values T and R represent the range of translations and rotations from SPM.
(A) Motion substantially below threshold (0.15), accepted by our method; (B) excessive motion above the threshold, rejected by our method; and (C) motion
close to the threshold, but rejected by our method because 
 � 0.1.
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the values T and R indicate the minimum and maximum
translations and rotations determined with SPM99. Motion
in Fig. 7A is subthreshold, with translations between less
than 0.3 mm and rotations less than 0.6°. Accordingly, the
quality parameter A(t) is smaller than 0.1 for all time points,
and 
 � 0. Fig. 7B shows the results in a subject that moved
substantially (maximum translation 2 mm, maximum rota-
tion 3°): the quality parameter A(t) is above threshold (0.15)
for most time points (
 � 94%). Finally, Fig. 7C shows an
example with moderate amounts of excessive motion (trans-
lations up to 1.5 mm and rotations up to 2°). A(t) is above
threshold during the last part of the time series (
 � 29%),
and the scan was rejected.

These results suggest that A(t) might be used to identify
subsets of scans that are acceptable for further analysis; for
example, if unacceptable motion occurs only toward the end
of a time series, the initial time points might still be valid for
statistical analysis. This would require fMRI analyses with
a variable number of time points for each scan; however, it
is difficult and time-consuming to perform such analysis in
existing analysis packages such as SPM, because a different
design matrix must be created for each scan.

Across all 50 studies, the accuracy of the motion detector
was 90%. The remaining 10% of incorrect classifications
were all false-negative cases, i.e., scans that were deemed
acceptable by the motion detector but that exceeded the
threshold of motion according to SPM. However, all of
these cases represent time series with marginal motion, in
which motion parameters from SPM were close to 1 mm
translation or 1° rotation. Of note, there were no false
positives, i.e., scans where A(t) detects excessive motion
although subject motion is acceptable. This point is impor-
tant, since false positives would result in unnecessary repeat
scans.

Conclusion

A fast, k-space data-based algorithm was developed to
detect and classify subject motion during fMRI time
series. The algorithm determines the average squared
difference between the first fMRI volume acquired and
that of successive time points. Good agreement was
found between our quality measure and the sum of the
absolute values of SPM99 parameters of motion in 50
fMRI studies. The simple and fast algorithm achieves
correct classification of excessive motion in 90% of all
cases, with the remaining 10% showing marginally ac-
ceptable motion.

After development and calibration of the motion detector
as described above, we applied the technique to over 100
additional fMRI studies to evaluate subject motion online.
For these new scans, the performance of the motion detector

was close to 100%. This has enabled us to provide highly
accurate feedback to the subjects in real time whether their
motion during the prior fMRI scans was acceptable or
excessive and whether repeat scans with excessive motion
are necessary.
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