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Muon Collaboration

e Physics Need

e Design Studies and Cost Reduction
1. Phase Rotation
2. Cooling
3. Acceleration

e Experimental Program

1. Target
2. Cooling
3. Acceleration

e Conclusion



Physics Need e.g. CP Determination
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If sin? 613 < 0.01 Super beam has a hard time

But if sin? 613 < 0.0001 Neutrino Factory can study it
Clearly, a Super beam will preceed a Neutrino Factory

and sin” 13 will be known before a factory is built
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Design Studies in the US

e Neutrino Factory Study I

— Emphasized Feasibility
— Sponsored by Fermi (finished March 00)

~»Entry Level” (=% 0.2 10% 11/107sec at 1 MW)
e Neutrino Factory Study II

— Emphasized Performance with Feasibility
— Sponsored by BNL (finished April 01)
— Similar Cost

~»Higher Flux” (= 1.2 10% 11/107sec at 1 MW)

e Current Neutrino Factory Work

- Emphasize Lower Cost

- Maintain or improve Performance
- Study 3 (In about 2 Years)

e Ongoing Muon Collider Studies
— Cooling Ring Designs
— Conceptual Design
— Feasibility Study (later)
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Studies of savings on these items
will study others later



1) PHASE ROTATION

Study 2 with Induction Linacs
dE

(Reduce dp/p prior to Cooling)
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Neuffer’s Bunched Beam Rotation with 200 MHz RF
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e 200 MHz RF is cheaper than Induction Linacs

e But RF frequency must vary along bunching channel
(high mom. bunches move faster than low)
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ICOOL Simulation
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2) IONIZATION COOLING

Use the Larger Accelerator Acceptance

e Less cooling (50 m vs 108 m)
e Weaker focusing: (beta= 70 vs 40 mm)

e No coils outside RF
e No Liquid Hydrogen absorbers

0.6 | 200 MHZ RF
16 MV /m
/E“ 107
= A /mm?
0.4} SC COIll
:-5
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0.2+ 21 cm radius
1 cm LiH
or 1.5 cm Li
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Aside on Cooling Rings

e Bending and wedge absorbers: Cooling also in longitudinal
e Many turns gives more cooling at lower cost

e But not matched to current phase rotation
e Needed for a Muon Collider
e Much Progress Now fully simulated

e.g2 RFOFO Ring

Injection/Extraction
Vertical Kicker

Alternating 3T Solenoids
Tilted for Bending B,

201 MHz rf 12 MV/m
Hydrogen Absorbers

Circumference m 33
Momentum MeV/c 200
Maximum axial field T 3
Ave. bending field T 0.125
Hydrogen wedge thickness cm 30
Wedge Angle deg 100
RF Grad. MV/m 12




3) ACCELERATION

For the above cooling we require 30 pi mm Acceptance
a) Larger acceptance Pre-Acc Linac (.2 to 1.5 GeV)
b) New Dog-Bone RLA 1.5 to 5 GeV

= .

e Dog bone prefered over racetrack for switch yards

e Shorter linac and more arcs may be cheaper



c) Non-Scaling FFAG’s for 5 to 20 GeV

Scaling FFAG (MURA /Japan)

e Fixed Field but huge momentum acceptance (eg 10-20 GeV/c)
e More turns than RLA: requires less RF
e Also has 30 pi mm Acceptance

e But large circumference and apertures

Non-Scaling FFAG’s (C. Johnstone & D. Trbojevic)

e Smaller circumference (320 vs 1200 m)
e Smaller aperture (18 vs 40 cm)

e Still has 30 pi mm acceptance

Studies in Collaboration with Japan
2-3 Workshops per year
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mu/p

emit (pi mm)

Performance

Muons per 24 GeV Proton

Numbers from RBP idealized simulation (later numbers changing & somewhat less)
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Compare All New System with Study 2

Work in progress: list and draw all needed components

Study | Beam line | Hydrogen | Acceleration B dl
m m m T m

2 6891 16.0 802 1649
2a 1950 0.0 360 989
Y% 28 0 45 60

Note these numbers Use Dejan FFAG’s
Target of ”half the cost” not unreasonable
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Experimental programs

Technical Challenges

1. Targets

e High Average power (1-4 MW)
e High Z material
e Severe Shocks

2. Cooling

e High Gradient 200 MHz RF
e In Solenoid Magnetic Fields
e Best Absorber is Liquid Hydrogen

3. Muon Acceleration

e Highest Gradient (to avoid decay)
e Large Emittance Beam (to avoid need for too much cooling)

e Needing 200 MHz Superconducting RF (to accept beam)
(2 times lower than LEP)
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1) TARGET PROGRAM
e 1-4 MW Beam Power

e Greater pion production with high Z target
Factor of 2 over graphite

e Shock lifetime and cooling problems with solids
moving chain also considered

e Mercury jet proposed in Study 2

e Inside 20 T solenoid to focus pions
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AGS Experiment E951
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Jet

e 4 Tp/bunch (4 10'%)
But density equiv to 1 MW

e Non-Explosive Dispersion
e Good Result

But

4 MW Nu-Factory requires:
32 Tp/bunch (3.2 10%9)

SO

e Need further Experiment
With more intensity
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Effects of Magnetic Field
Stabilization From Magnetic Field

CERN Observation Simulation with beam Samulyak
Without beam Stabilizing of the mercury jet by the longitudinal magnetic field

0 Tesla

10Tesla

20Tesla
a) B=0:b)B =2T

c)B=4T;d)B=6T;e) B=10T

Magnet changes dynamics: suppresses breakup

e Need experiment with magnet
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Design 15 T Pulsed Magnet (with MIT)

e Very low rep rate acceptable, so:

— Pre cool with liquid nitrogen
— Pulse for 10 seconds

e Magnet and cryostat under Construction

{

70° K Operation

15 T with 4.5 MW Pulsed Power
15 cm warm bore Peter Titus, MIT

I m long beam pipe
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New Collaboration (BNL, CERN, Japan, Rutherford)
Location for Experiment 7 Require 30 Tp for 4 MW Case

e BNL : 70 Tp

—requires full turn extraction (now ~ 8 Tp)
— conflict with RSVP

e JPARC : 300 Tp

—not till > 2007
— but LOI submitted

General
Location

e CERN : 30 Tp
— Best possibility
— LOI submitted

— Very encouraging
response

— Proposal very soon
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2) R&D on Ionization Cooling Components
MUCOOL Collab Lead by Fermilab (A. Bross)

RF cavity

Focus coil

o

7 i b g i
parql ] I I
1_h i I - S Ve
T ‘ it
»

Coupling coil

\- LH; absorber
e Design, Build, Absorbers
e Design, Build, and Test Absorber Windows
e High Gradient RF Studies at 805 MHz (Lab G FNAL)
® Design & Start Const. of 201 MHz Cavities

e Experiment with High Pressure Hydrogen STTR
e Test area at FNAL

ol
— —|
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& DETECUTOR MODULES

MUON IONIZATION COOLING EXPERIMENT
(MICE)

e Solid Design based on Study-2 channel
(Similar components to RFOFO cooling ring)

e International Collaboration: (US, Europe, Japan)
e Funding proposal sent to NSF, (& in Europe & Japan)
e Proposal has Scientific Approval at RAL

RF /COUPLING MAGNET LHZ2 ABYNORBER /FOCUS MAGNET
2 MODULES

COOLING CHANNEL
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Weak Focused Cooling Ring Experiment 7

6 DIPOLE RING

o Field ~ 2 T
e Ring is small (circ=4 m)
e Too small for injection Kicker

e But a Cooling demonstration?

Complements MICE

e 6 D rather than 4 D

e A factor ~ 10 cooling, vs, than 10%

e Much cheaper

e But components unlike real cooling system

e May not work (not fully simulated yet)

e Proposal with Mississippi
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3) R&D ON ACCELERATION
SC Cavity work for Acceleration Cornell NSF

e Built new test pit

e Design, build, and test 201 MHz SC cavities
11 MV /m achieved
limited by drop in Q c.f. FS2 spec = 16 MV /m

e Cavity returned to CERN for re-
. | \ —a il ..-:.-'1' " B

coating

bt

i

'''''
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Possible Non scaling FFAG Model

Remember

e Electron AGS Model at BNL
e Electron Scaling FFAG Models at MURA

Non-Scaling FFAG Has Two New Dynamics Phenomena:

1. Rapid acceleration through integer resonances

2. Acceleration in RF troughs rather than in buckets

Energy MeV 10 to 20
Diameter m 4.5
Peak Mag Fields T 0.2
Cell length cm 44
Max Radial Ap cm 1.7
Freq for mu studies GHz 3
Freq for p Studies MHz 21

| | |
0.0 5.0

2.5
length (m)

Discussions in US-Japan collaboration of an electron model
This would be aimed for both muon and proton applications

23



Conclusion

e Good Design Progress Since Study 2

— Phase Rotations Without Induction Linacs
— Lower Cost Cooling Solution

— Larger Acceptance Acceleration

— Expect Lower Cost and > 2 X Performance

e R&D going well

— Target Experiment Magnet Under Construction
— 200 MHz SC Cavity Tested and Being Re-Coated
— Progress on hydrogen and RF windows

— 200 MHz Cu RF Under Construction

e Proposed Experiments

— CERN Target Experiment

— MICE at Rutherford
— Weak Focus Cooling Ring Demonstration ?
— Non-Scaling FFAG Electron Model ?

e But short of funds since DOE 1/2 cut in 2001
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