eA Physics @ eRHIC

Raju Venugopalan Brookhaven National Laboratory

Presentation before BNL PAC, March 23rd, 2006

DIS highlights

- Bjorken scaling: the parton model.
- Scaling violations: QCD- asymptotic freedom, renormalization group; precision tests of pQCD.
- Rapid growth of gluon density at small x, significant hard diffraction.
- Measurement of polarized structure functions: scaling violations, the "spin crisis".
- QCD in media:EMC effect, shadowing,color transparency,...

Principal physics goals of eRHIC

Extend DIS Paradigm for <u>quantitative</u> QCD studies in largely ``terra incognita" small x-large Q^2 regime

Three pronged approach

- High luminosity (~100 times HERA) unpolarized e-p scattering
- Polarized e-pol. P highest energies and collider mode for the first time
- First eA collider detailed map of QCD in nuclear media & very high parton densities.

Why is unpolarized ep/eA scattering at small x interesting ?

Measure several observables (F_L, G_A, F_{diff,A},...) in wide kinematic region for the first time

- Corroborate or disprove novel QCD based ideas about the structure of hadrons at small x
 - these ideas have predictive power for above stated observables
 - and for our interpretation of P/D-A and A-A collisions at high energies.

F_L is a positive definite quantity- more sensitive to higher twists than F_2? - clarify comparision with leading twist NLO pQCD at low x and moderate Q^2

APPROXIMATE 10% OF EVENTS ARE HARD DIFFRACTIVE EVENTS!

III: Hard diffractive processes

30 % of eRHIC eA events may be hard diffractive events-Study sizes and distributions of Rapidity Gaps

ELECTRON-NUCLEUS SCATTERING

Virtual photon coherence length:

$$l_{\rm coh.} \propto 1/(2m_n x)$$

x_Bj << 0.01 : Photon coherence length exceeds nuclear size

0.01 < x_Bj < 0.1: Intermediate length scale between R_p</p>

& R_A

x_Bj >> 0.1: Photon localized to longitudinal size smaller than nucleon size Ratio of Gluon densities in Lead to Proton at $Q^2 = 5 \,{\rm GeV}^2$ in x range $10^{-2} - 10^{-5}$

Why is unpolarized ep/eA scattering at small x interesting ?

- Measure several observables (F_L, G_A, F_{diff,A},...) in wide kinematic region for the first time
- Corroborate or disprove novel QCD based ideas about the structure of hadrons at small x
 - these ideas have <u>predictive power</u> for above stated observables
 - and for <u>our interpretation</u> of P/D-A and A-A collisions at high energies.

STRUCTURE OF HIGHER ORDER CONTRIBUTIONS IN DIS

- Coefficient functions C computed to NNLO for many processes,
 e.g., gg -> H
 Harlander, Kilgore; Ravindran, Van Neerven, Smith; ...
 - Splitting functions -P computed to 3-loops recently! Moch, Vermaseren, Vogt

Resolving the hadron in the Regge-Gribov limit

Golec-Biernat & Wusthoff's model

where $\sigma_{q\bar{q}P}(r_{\perp}, x) = \sigma_0 \left[1 - \exp\left(-r_{\perp}^2 Q_s^2(x) \right) \right]$

$$Q_s^2(x) = Q_0^2 \left(\frac{x_0}{x}\right)^{\lambda}$$

Parameters: $Q_0 = 1 \text{ GeV}; \lambda = 0.3; x_0 = 3 \cdot 10^{-4}$

&

GEOMETRICAL SCALING AT HERA

Scaling seen for all x < 0.01 and $0.045 < Q^2 < 450 \,\mathrm{GeV}^2$

Comparison with Data

FS model with/without saturation and **IIM CGC model** hep-ph/0411337.

Comparison with Data

Exclusive J/Psi production: Kowalski-Teaney

NOVEL REGIME OF QCD EVOLUTION AT HIGH ENERGIES

The nuclear "oomph" factor!

eA at eRHIC \approx same parton density as ep at LHC energies!

THE HADRON AT HIGH ENERGIES

Mean field solution of JIMWLK = B-K equation

Balitsky-Kovchegov

Remarkable correspondence of high energy QCD With Stat. Mech. : Munier-Peschanski;

Iancu-Mueller-Munier

B-K same universality class as FKPP equation

FKPP = Fisher-Kolmogorov-Petrovsky-Piscunov

FKPP-describes unstable travelling wave fronts -

B-K correspond to spin glass phase of FKPP

STRONG HINTS FROM RHIC OF NEW PHYSICS

Phenomenon well within eRHIC kinematic range

Shadowing and diffraction:

- Is shadowing a non-perturbative leading twist phenomenon, or is generated by weak coupling, high parton density effects?
- •What is the relation of shadowing to diffraction? AGK rules relating the two are valid at low parton densities-how do these generalize to large parton densities?

Armesto, Capella, Kaidalov, Salgado

R_{A1,A2} = 1 => Pomeron flux is A -independent = f(A1,A2) - universal form

Diffractive Vector Meson Production:

$$\frac{d\sigma}{dt}|_{t=0}(\gamma^*A \to VA) \propto \alpha_S^2 \left[G_A(x,Q^2)\right]$$

Very sensitive to small x glue!

Brodsky, Gunion, Mueller, Frankfurt, Strikman

Initial conditions for the QGP

McLerran, Ludlam; Physics Today

Concluding remarks on eA:

- Very significant progress in theory-novel RG equationseRHIC can test to high precision new phenomenaexpect scaling violations very different from DGLAP
- Besides inclusive signatures, semi-inclusive measurements (vector mesons, hard diffraction,...) especially sensitive to the high parton density state.

eRHIC extends previous "in-media" studies of fixed target (NMC, HERMES,...) experiments to new kinematic regions in clean collider environment (see Bernd's talk) Both eA & pA essential to test universality of these ideas (see extra slides)

Only preliminary studies for eA done. Urgently require detailed studies with eRHIC kinematic acceptance - student/post-doc support essential

Extra Slides

Complementary physics of pA & eA at RHIC

Both p/D-A & eA can probe small x region-important to test universal aspects of new physics.

A due to independent "lever arms" in x and Q² well equipped for precision measurements. Much harder with pA

A & pA have important qualitative differences for hard diffractive processes. May be 30-40% of cross-section in eA! I: Universality: collinear versus k_t factorization

Are these objects universal? Very important for extraction of "gluon" distributions.

II: Extracting gluon distributions in pA relative to eA

constraints-limit precision and range.

Impressive reach...

But very difficult to see scaling violations $M^2 > 16 \, GeV^2$

Direct photons: promising-need wide coverage to go to small x-need simulations at forward rapidity...kt issues to be resolved .

Factorization theorems for diffractive parton distributions only hold for Lepton-Hadron processes-NOT for Hadron-Hadron processes.

Spectator interactions destroy Rapidity Gaps in pA scattering

Study of Rapidity Gaps - links the study of CGC physics & confinementcan provide major advance in our understanding.