Status and Perspective of the high-energy polarized proton-proton program at RHIC

Bernd Surrow

Outline

Future polarized p-p collider performance

- Future polarized p-p physics program
 - O Gluon polarization
 - O Quark / Anti-Quark Polarization
 - O Transverse spin dynamics

Highlights of recent results and achievements

Theoretical foundation

Summary andOutlook

General

 $d\sigma_{pp} \propto f_1 \otimes f_2 \otimes \sigma_h \otimes D_f^h$ Factorization

 \square Precision measurements (e.g. F_2) \Rightarrow Precision on quark/gluon structure $e^{(k')}$

BNL PAC Meeting, BNL, Department of Physics Upton, NY, May 08, 2008

Bernd Surrow

Gluon polarization - Extraction

Extract $\Delta g(x,Q^2)$ through Global Fit (Higher Order QCD analysis)!

$$A_{LL} = \frac{d\Delta\sigma}{d\sigma}$$

Gluon polarization - Inclusive Measurements

Inclusive Jet production (200GeV: Solid line / 500GeV: Dashed line)

$$x_T = 2p_T/\sqrt{s}$$

- Gluon polarization Correlation Measurements
 - Correlation measurements provide access to partonic kinematics through Di-Jet/Hadron production and Photon-Jet production

$$M = \sqrt{x_1 x_2 s} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

- Di-Jets: All three (LO) QCD-type processes contribute: gg, qg and
 gg with relative contribution dependent on topological coverage
- Photon-Jet: One dominant underlying (LO) process
- Larger cross-section for di-jet production compared to photon related measurements
- \square Photon reconstruction more challenging than jet reconstruction
- \square Full NLO framework exists \Rightarrow Input to Global analysis

Di-Jet production

Photon-Jet production

do/dp₁ (pb/GeV)

Quark / Anti-Quark Polarization - W production

RHICBOS W simulation at 500GeV CME

O Key signature: High p_T lepton (e^-/e^+ or μ^-/μ^+) (Max. $M_W/2$) - Selection of W^-/W^+ : Charge sign discrimination of

 W^{-}/W^{+} : Charge sign discrimination of high p_{T} lepton

O Required: Lepton/Hadron discrimination

Quark / Anti-Quark Polarization - Sensitivity in W production

- O Theoretical framework for leptonic asymmetries exists (RHICBOS) ⇒ Basis for input to global analysis!
- Reconstruction of W-rapidity only possible in approximative way in forward direction
- O Important contribution from forward and mid-rapidity region

$$A_L^{W^+} = -\frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

$$x_1 = \frac{M_W}{\sqrt{s}} e^{y_W} \qquad x_2 = \frac{M_W}{\sqrt{s}} e^{-y_W}$$

O Large uncertainties for polarized anti-quarks reflected in leptonic asymmetries!

- Transverse spin dynamics
 - Single transverse-spin asymmetry

$$A_N = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}}$$

- O Basic, naive QCD calculations (leading-twist, zero quark masses) predict: A_N =0 ($A_N \sim m_q/\sqrt{s}$)
- Study transverse spin effects:
 - O Qiu and Sterman (Initial-state twist-3)/ Koike (final-state twist-3)
 - Sivers: k_⊥ in initial state (Correlation of quark k_⊥ and transverse proton spin):
 ⇒ Orbital momentum
 - O Collins: k_{\perp} in final state (Correlation of transverse quark spin and k_{\perp} of hadron):
 - ⇒ Transversity

Cross Section Results

 Good agreement between data and NLO calculations for neutral pion production at forward and central rapidity

Cross Section Results

O Good agreement between data and NLO calculations for jet production and prompt photon production at

central rapidity

ALL Results - Inclusive Jet Production

$$\Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$

$$\Delta G(Q^2 = 1 \, \mathrm{GeV}^2) \approx 1.8$$

$$\Delta G(Q^2 = 1 \, \mathrm{GeV}^2) \approx 0.4$$

- \circ RUN 6 results: GRSV-MAX / GRSV-MIN ruled out A_{LL} result favor a gluon polarization in the measured x-region which falls in-between GRSV-STD and GRSV-ZERO
- O Consistent with RUN 5 result (Factor 3-4 improved statistical precision for $p_T > 13 GeV/c$)

ALL Results - Neutral pion production

O Consistent RUN 5/6 results

O RUN 6 results: ALL result favor a

gluon polarization in the

measured x-region which falls in-

between GRSV-STD and GRSV-

ZERO

Global analysis incl. RHIC pp data

 \circ Strong constraint on the size of Δg from RHIC data for 0.05<0.2

- Evidence for a small gluon polarization over a limited region of momentum fraction
- of x-coverage needed!

 Output

 Description:

 Output

 Description:

\square A_N results

 \circ Precise measurement of A_N as a function of x_F

• A_N calculations (Sivers / Twist-3) in / comparison to precise x_F dependence of measured $A_N \Rightarrow$ Constrain models!

\square A_N results

- Measured A_N is not found to decrease in p_T in all x_F bins
- In contrast:

 Theoretical
 models predict
 A_N to
 decrease with

Future polarized p-p collider performance

- Polarized proton-proton operation at RHIC at 200 / 500 GeV
 - O During last longest polarized proton-proton run (RUN 6):
 - ☐ Luminosity: ~1pb-1/day (~3pb-1/day design) delivered luminosity
 - ☐ Polarization: ~60% polarization (70% design)
 - 500GeV development: Achieved 45%(*) beam polarization for single beam at 250GeV
 - O Goal: At 70% beam polarization
 - □ 200GeV:
 - 60·10³⁰cm⁻²s⁻¹
 - □ 500GeV:

150 · 1030 cm-2s-1

(*) Assumption: Analyzing power at 250GeV same as for 100GeV!

Gluon polarization - Projection Run 9

- Substantial improvement on gluon polarization from inclusive measurements
- Complementary information from STAR and PHENIX

0.8

Results: Gluon Spin contribution

Correlation measurements: Di-Jet production - Data Understanding

0.8

4.396 / 9

 0.9983 ± 0.0101

0.8834

M [GeV/c²]

$$M \propto \sqrt{x_1 x_2}$$

50 60

0.2 0.4 0.6

- O Data/MC
 comparison
 complete Good
 agreement in
 Di-Jet
 variables
- First crosssection and A_{LL} measurement in progress

- Gluon polarization Di-Jets
 - Substantial improvement in Run 9 from Di-Jet production
 - Good agreement between
 LO MC evaluation and full

NLO calculations

$$M = \sqrt{x_1 x_2 s} \qquad \eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

- Quark / Anti-Quark polarization program at PHENIX
 - Forward Muon Trigger layout

- 3 RPC planes for each muon chamber Expected installation: Stations 2/3-North in 2009 2/3-South in 2010
- FEE upgrade of muon tracking Expected installation: North in Summer 2008 / South in Summery 2009

Quark / Anti-Quark polarization program at PHENIX

- Main offline background: Low pT
 hadrons decaying within muon
 tracker volume mimicking a high pT
 track
- O Tight cuts reduce 5/B ratio to 1/3
- Hadron absorber after central
 magnet yoke to obtain 3/1 ratio

- Quark / Anti-Quark polarization program at PHENIX
 - Large asymmetries dominated by quark polarization - Important consistency check to existing DIS data with 100pb⁻¹ (Phase I)
 - Strong impact constraining unknown antiquark polarization requires
 luminosity sample at the level of
 300pb⁻¹ for 70% beam polarization
 (Phase II)

Quark / Anti-Quark polarization program at STAR

Forward GEM Tracker: FGT

- Charge sign identification for high momentum electrons from W[±] decay (Energy determined with EEMC)
- Triple-GEM technology
- FGT project:

ANL, IUCF, LBL, MIT, University of Kentucky, Valparaiso University, Yale

- Successful project review (Capital equipment funding): January 2008
- Expected installation: Summer 2010

- Quark / Anti-Quark polarization program at STAR
 - e/h separation: Full PYTHIA QCD background and W signal sample including detector effects

- \circ e/h separation based on global cuts (isolation/missing E_T) and EEMC specific cuts as
- \circ With current algorithm: E_T > 25GeV yields S/B > 1 (For E_T < 25GeV S/B ~ 1/5) used for A_L uncertainty estimates

Quark / Anti-Quark polarization program at STAR

Reach of EEMC Acceptance

TPC + FGT Tracking, $p_{T} = 30 GeV/c$

6 triple-GEM disks, assumed spatial resolution $60\,\mu$ m in x and y (Fairly insensitive for $60\text{-}100\,\mu$ m)

Charge sign reconstruction probability above 90% for 30 GeV p_T over the full acceptance of the EEMC for the full vertex spread

Conclusion:

Charge sign reconstruction impossible beyond η = ~1.3

- Quark / Anti-Quark polarization program at STAR
 - Large asymmetries dominated by quark polarization - Important consistency check to existing DIS data with 100pb⁻¹ (Phase I)
 - Strong impact constraining unknown antiquark polarization requires
 luminosity sample at the level of
 300pb⁻¹ for 70% beam polarization
 (Phase II)

Transverse spin dynamics

- O Conventional calculations predict the asymmetry to have the same sign in SDID and γ + jet whereas calculations that account for repulsive interactions between like color charges predict opposite sign
- Critical test on Sivers effect

Important test at RHIC of fundamental QCD
 prediction of non-universality of Sivers effect

Summary and Outlook

Recorded Luminosity	Main physics Objective	Remarks
~50pb ⁻¹	Gluon polarization using di-jets and precision inclusive measurements	200 GeV
~100pb ⁻¹	W production (Important consistency check to DIS results - Phase I) Gluon polarization (Di-Jets / Photon-Jets)	500 <i>G</i> eV
~300pb ⁻¹	W production (Constrain antiquark polarization - Phase II) Gluon polarization (Di-Jets / Photon-Jets)	500 <i>G</i> eV
~30pb ⁻¹	Transverse spin gamma-jet	200 GeV
~250pb ⁻¹	Transverse spin Drell-Yan (Long term)	200 GeV

- Deam polarization: 70% / Narrow vertex region / Spin flipper for high precision asymmetry measurements
- Critical: Sufficient running time!