STAR BUR Run 10 and 11

James Dunlop

Brookhaven National Laboratory STAR PAC Presentation

1

Outline

- Performance Run 9
- Run 10 Beam Use Request
 - Search for the QCD Critical Point in Au+Au
 - Quantitative studies Au+Au 200 GeV with DAQ1000 and ToF
- Run 11 Beam Use Request
 - Return to Spin Program
 - U+U collisions for hydrodynamic studies at 200 GeV
 - Studies of gluonic matter with pp2pp

STAR Collaboration Membership

U.S. Labs: Argonne, Lawrence Berkeley, and Brookhaven U.S. Universities: UC Berkeley, UC Davis, UCLA, Carnegie Mellon, Creighton, CCNY, Indiana, Kent State, MSU, Ohio State, Penn State, Purdue, Rice, Texas A&M, UT Austin, Washington, Wayne State, Valparaiso, Yale, MIT, Kentucky, Old Dominion U Brazil: Universidade de Sao Paulo, Universidade Estadual de Campinas China: IHEP, IOPP, USTC, Tsinghua U., SINAP, IMP, ShanDong U Croatia: Zagreb University Czech Republic: Institute of Nuclear Physics, Czech Technical U. England: U. of Birmingham France: SUBATECH Germany: Max Planck Institute, Frankfurt (BES) India: IOP, Bhubaneswar, Jammu U., IIT-Mumbai, Panjab U., Rajasthan U., VECC Netherlands: NIKHEF Poland: Warsaw University of Technology Russia: MEPHI, LPP/LHE JINR - Dubna, IHEP - Protvino, ITEP South Korea: Pusan National U., KISTI

Six new institutes joined in 08-09

New institute has applied for the membership: - HIT, China: two-particle correlation

12 countries56 institutes620 scientists and engineers

Research topics at the QCD Lab:

- properties of strongly interacting matter
- proton spin structure
- gluonic matter

STAR: A Correlation Machine

Changes for Run 9

• Major changes in the detector: Fully commissioned

Time Projection Chamber DAQ1000: replacement of entire electronics chain

Time of Flight: 75% of trays in place First run with more than ~few trays -

Electromagnetic Calorimeter: Shower Max: modification of electronics to decrease deadtime Towers: rewire trigger to increase jet efficiency

Trigger: New electronics (QT boards) for basic detector systems (BBC, ZDC, etc.) New Trigger Control Unit for greater flexibility (not fully commissioned)

Overall goal: increase sampled/delivered ratio by lower deadtime Largely successful: >90% livetime, best fills ~70% efficiency Have sampled 50% of delivered £ since May 7, as projected 5

Performance of STAR ToF

TOF+dE/dx+relativistic dE/dx (π,p) from 0.2 up to 12 GeV/c M. Shao et al., NIMA 558, (419) 2006

Datasets in Run 9

- Goal: <u>£:10 pb⁻¹</u>, P²<u>£: 2.5 pb⁻¹</u>
- *L* goal reached
 - expect W Jacobian peak
- Polarization an issue
- No significant A_L expected
 6/15/09 STAF

- Goal: *L*: 50 pb⁻¹, P⁴*L*: 6.5 pb⁻¹
- Expect: *L* ~40%, P⁴*L* ~30%
- Minbias reference: x10
- Will need to return in Run 11

500 GeV: Lessons learned

- Higher Luminosity \rightarrow Stress on TPC
 - Acute aging: high voltage trips
 - Largely alleviated by decreasing gain: made possible by DAQ1000
 - Chronic aging: total integrated charge on wires
 - Studies ongoing to project from Run 9 into the future
- TPC Review on June 4-5 2009 with outside experts
 - 500 GeV: no showstoppers, but careful study and plans needed
 - Detailed recommendations for study and possible alleviation scenarios will come from the review

Timeline for upgrades

Run 10: Critical Point Search

Run	Energy	System	Time	Goal
10 ⁽¹⁾	$\sqrt{s_{NN}}$ =7.7-39 GeV	Au + Au	16 weeks	Critical Point search
	$\sqrt{s_{\rm NN}} = 5 { m GeV}$	Au + Au	1 week ^(a)	Commissioning and first look at data
	$\sqrt{s_{\rm NN}} = 200 { m GeV}$	Au + Au	8 weeks	250M central 300M minbias 2 nb ⁻¹ sampled
11 ⁽²⁾	$\sqrt{s} = 200 \text{ GeV}^{(b)}$	$\begin{array}{c} p_{\rightarrow} p_{\rightarrow} \\ p_{\uparrow} p_{\uparrow} \end{array}$	13 weeks	$\sim 30 \text{ pb}^{-1} \text{ long.}^{(d)}$ 15 pb ⁻¹ transverse
	$\sqrt{s} = 500 \text{ GeV}^{(c)}$	$p_{\rightarrow} p_{\rightarrow} p_{\rightarrow} p_{\uparrow} p_{\uparrow}$		15 pb ⁻¹ longitudinal 6.5 pb ⁻¹ transverse
	$\sqrt{s} = 200 \text{ GeV}$	$p_{\rightarrow} p_{\rightarrow}$	5 days	pp2pp at high β*
	$\sqrt{s_{NN}}=200 \text{ GeV}$	U + U	4 weeks ^(e)	400M events

(1) 30 cryo weeks, 25 weeks production with one species

(2) 25 cryo weeks, 18 weeks production with two species.

(a) C-AD test for higher luminosity at the lower energy

(b) 60% or higher polarization in both yellow and blue rings is needed.

(c) 50% or higher polarization in both yellow and blue ring is needed.

(d) Request is to finish the minimum 50 pb^{-1} goal and make progress towards the portion of

the long-term goal of 80 pb⁻¹ at 60% polarization remaining after Run 9 is completed

(e) Contingent on EBIS operation at moderate rates (5-10 kHz)

Critical Point Search

Strategy: Critical Point Search in Run 10

- 1st order phase transition: bracket location of the Critical Point
 - Hydrodynamics: v_1 , v_2 , azimuthally sensitive HBT for EOS softest point
- Direct signatures of Critical Point via enhanced fluctuations
 - Large-acceptance identified particle fluctuations and correlations
- Need data samples sufficient for definitive measurements

1st order: Elliptic and Directed Flow

- Search for flow signatures of softest point in EOS
 - $-v_2$: no gross signature, but possibility in more differential measurements
 - e.g. collapse of proton elliptic flow [SPS]
 - $-v_1$: shape vs. rapidity. "Wiggle" a phase transition signature

1st order: HBT vs Reaction Plane

Fluctuations: direct signature of Critical Point

- Critical point in Lattice QCD: divergence of susceptibilities
- Divergence of susceptibilities \rightarrow large fluctuations
- Search for non-monotonic behavior in fluctuation measures

Identified particle fluctuations

- Example: K/π fluctuations
 - Rise in NA49 data not explained by models
- STAR: Full PID, large acceptance uniform over $\sqrt{s_{NN}}$
- Unprecedently accurate and differential measurements possible
- Need 5M events: lowest energy most promising

Higher orders: Kurtosis

- Higher order moments: potentially more sensitive
 Sensitive to the 7th power of correlation length
- Studies in current data establish baseline for interpretation
- Need: 5M events at each energy (Kurtosis*Variance ±0.1)

Turn-off of QGP Signatures

- Search for onset of signatures of new phenomena discovered at highest RHIC energy
 - Number of constituent quark scaling in v₂: partonic collectivity
 - Hadron suppression: opacity
 - "Ridge": pair correlations extended in pseudorapidity
 - Local parity violation

Partonic collectivity

- v₂ scales as n_q → partonic degrees of freedom
- Where does partonic collectivity break down?

Insufficient reach at SPS Need: ~5M events at each energy for π , K, p, A ϕ , Ω need more; only possible for $\sqrt{s_{NN}} \ge 17.3$ GeV

Hadron Suppression

- Factor 5 suppression at 200 GeV \rightarrow opacity to fast partons
- Interpretation complicated by two effects
 - Initial state effects large at low energies (Cronin) $\rightarrow R_{CP}$ preferred
 - n_q grouping at intermediate p_T: fragmentation not dominant origin
- Drives statistical needs for √s_{NN} ≥ 17.3 GeV 6/15/09 STAR PAC Presentation

Ridge: pair correlations

Local Parity Violation

- Signature consistent with local parity violation at 200, 62 GeV
 - Measure Parity Even so potential contamination
 - No background found to date that can mimic effect
 - · Background (and magnetic field) expected to change with energy
- Need: 5M events at all energies

Specific Critical Point Search Program

Beam Energy	μ _в (MeV)	Event Rate	8-hr Days/1M Events	Events proposed	8-hr days proposed	
5	550	0.8	45	(100 k)	5	-
7.7	410	3	11	5M	56	
11.5	300	10	3.7	5M	19	
18	220	33	1.1	15M	16	
27	150	92	0.4	33M	12	
39	110	190	0.2	24M	5	

Conservative estimate of rates and hours/day

Expected range of Critical Point: $\mu_B = 150-600 \text{ MeV}$

Physics drivers of the program

Collision Energies (GeV)	5	7.7	11.5	17.3	27	39
Section Observables	Millions	s of Eve	nts Need	led		
A1 v_2 (up to ~1.5 GeV/c)	0.3	0.2	0.1	0.1	0.1	0.1
A1 <i>v</i> ₁	0.5	0.5	0.5	0.5	0.5	0.5
A2 Azimuthally sensitive HBT	4	4	3.5	3.5	3	3
A3 PID fluctuations (K/ π)	1	1	1	1	1	1
A3 net-proton kurtosis	5	5	5	5	5	5
A3 differential corr & fluct vs. centrality	4	5	5	5	5	5
A3 integrated p_{T} fluct (<i>T</i> fluct)						
B1 n_q scaling $\pi/K/p/\Lambda (m_T-m_0)/n < 2 \text{GeV}$		6	5	5	4.5	4.5
B1 ϕ/Ω up to $p_T/n_q=2$ GeV/c		56	25	18	13	12
B2 R_{CP} up to $p_T \sim 4.5$ GeV/c (at 17.3) 5.5 (at 27) & 6 GeV/c (at 39)				15	33	24
B3 untriggered ridge correlations		27	13	8	6	6
B4 parity violation		5	5	5	5	5

Proven capabilities

- 9.2 GeV in Run 8 a success
 - Established rates, triggers
 - First measurements: ~3000 events
- STAR detector is ready: optimal configuration Run 10

Why now? Technical Considerations

- Detector optimal: full ToF, FTPC's, large beampipe
 - FTPC's: proven capability (RP, η reach) but incompatible with HFT, FGT
 - Backgrounds: small beampipes \rightarrow large backgrounds
- Start with $\sqrt{s_{NN}}$ =7.7 GeV where the beams are largest

Critical Point Search: Why Now?

Intense international interest in program now

- CPOD 09: >100 participants last week, 60% from foreign institutions

STAR is ready and best positioned to make these measurements now

Beam use proposal designed to make definitive measurements now

Run 10: Au+Au at 200 GeV

	Run	Energy	System	Time	Goal	
	10 ⁽¹⁾	$\sqrt{s_{NN}}$ =7.7-39 GeV	Au + Au	16 weeks	Critical Point search	
		$\sqrt{s_{\rm NN}} = 5 { m GeV}$	Au + Au	1 week ^(a)	Commissioning and first look at data	
Γ		$\sqrt{s_{NN}} = 200 \text{ GeV}$	Au + Au	8 weeks	250M central 300M minbias 2 nb ⁻¹ sampled	
	1 1 (²)	$1/a - 200 C_{a} V^{(b)}$	$\begin{array}{ccc} & & & \\ & & & \\ & & & 1 \rightarrow \end{array}$	12 weaks	$20 \text{ pb}^{-1} \log^{(d)}$	
			$p_{\uparrow}p_{\uparrow}$		15 pb ⁻¹ transverse	
		$\sqrt{s} = 500 \text{ GeV}^{(c)}$	$p_{\rightarrow} p_{\rightarrow}$ $p_{\uparrow} p_{\uparrow}$		15 pb ⁻¹ longitudinal 6.5 pb ⁻¹ transverse	
		$\sqrt{s} = 200 \text{ GeV}$	$p_{\rightarrow} p_{\rightarrow}$	5 days	pp2pp at high β^*	
		\sqrt{a} -200 GeV	TT I TT	4 weeks ^(e)	400M events	

(1) 30 cryo weeks, 25 weeks production with one species

(2) 25 cryo weeks, 18 weeks production with two species.

(a) C-AD test for higher luminosity at the lower energy

(b) 60% or higher polarization in both yellow and blue rings is needed.

(c) 50% or higher polarization in both yellow and blue ring is needed.

(d) Request is to finish the minimum 50 pb^{-1} goal and make progress towards the portion of

the long-term goal of 80 pb⁻¹ at 60% polarization remaining after Run 9 is completed

(e) Contingent on EBIS operation at moderate rates (5-10 kHz)

Run 10: Au+Au $\sqrt{s_{NN}}$ = 200 GeV

- Major improvements in detector and machine
- Triggered: 2 nb⁻¹ sampled (x4 vs. Run 7)
 - Non-photonic electrons with low material: Open Heavy Flavor R_{AA}
 - Quarkonia: Upsilon and high- $p_T J/\Psi$ with low material
 - γ -hadron: hadron $z_T \sim 0.3$ at hadron $p_T \sim 5$ GeV/c to distinguish E_{loss} scenarios
 - Triggered fully reconstructed jets for jet-jet and identified jet-hadron correlations

• Central: 250M (x10 vs. Run 4 and x30 relative to Run 7)

- Extension of fully reconstructed jets, unbiased by trigger, to 40-50 GeV
- Di- and tri-hadron identified particle correlations: jet-medium interactions
- Minimum bias: 300M (x4 relative to Run 7)
 - Jet conversion via K for p_T >10 GeV/c in peripheral collisions
 - Low-mass dileptons with low material: begin ToF for E.M. probes
 - -10σ measurement of hypertriton and anti-hypertriton production

Hard probes in Run 10

R_{AA}, 0-20% Au+Au

1.4

1.2

0.8

0.6

J/ψ

STAR Au+Au 0.5 nb⁻¹, p+p 50 pb⁻¹

PHENIX PRL 98 (2007) 232301

Statistical errors only

- DAQ1000+machine \rightarrow 2 nb⁻¹ •
- Fully utilize RHIC I and prepare for RHIC II
- Low material: time window before installation of HFT

Anti-hypertriton in Run 10

- 1st observation of anti-hypertriton (Run 7) reported QM2009
- 300M minbias events: 10σ anti-hypertriton+hypertriton

Run 11

Γ	Run	Energy	System	Time	Goal
	10 ⁽¹⁾	$\sqrt{s_{NN}}$ =7.7-39 GeV	Au + Au	16 weeks	Critical Point search
		$\sqrt{s_{\rm NN}} = 5 { m GeV}$	Au + Au	1 week ^(a)	Commissioning and first look at data
		$\sqrt{s_{NN}} = 200 \text{ GeV}$	Au + Au	8 weeks	250M central 300M minbias 2 nb^{-1} sampled
	11 ⁽²⁾	$\sqrt{s} = 200 \text{ GeV}^{(b)}$	$\begin{array}{c} p_{\rightarrow} \ p_{\rightarrow} \\ p_{\uparrow} \ p_{\uparrow} \end{array}$	13 weeks	$\sim 30 \text{ pb}^{-1} \text{ long.}^{(d)}$ 15 pb ⁻¹ transverse
		$\sqrt{s} = 500 \text{ GeV}^{(c)}$	$p_{\rightarrow} p_{\rightarrow}$ $p_{\uparrow} p_{\uparrow}$		15 pb ⁻¹ longitudinal 6.5 pb ⁻¹ transverse
		$\sqrt{s} = 200 \text{ GeV}$	$p_{\rightarrow} p_{\rightarrow}$	5 days	pp2pp at high β*
		$\sqrt{s_{NN}}$ =200 GeV	U + U	4 weeks ^(e)	400M events

(1) 30 cryo weeks, 25 weeks production with one species

(2) 25 cryo weeks, 18 weeks production with two species.

(a) C-AD test for higher luminosity at the lower energy

(b) 60% or higher polarization in both yellow and blue rings is needed.

(c) 50% or higher polarization in both yellow and blue ring is needed.

(d) Request is to finish the minimum 50 pb^{-1} goal and make progress towards the portion of

the long-term goal of 80 pb⁻¹ at 60% polarization remaining after Run 9 is completed

(e) Contingent on EBIS operation at moderate rates (5-10 kHz)

Run 11: U+U

- Significant increase in energy density for hydrodynamic studies
- Prolate shape: path-length dependence of E_{loss} at high density
- First run from EBIS likely to be moderate intensity
 - 4 weeks: sufficient statistics for studies of event selection, hydrodynamic quantities, and first look at hadron suppression

Spin Goals in Run 11

Significant time set aside for precision measurements

- Gluon polarization and its Bjorken-x dependence
- (anti-)quark polarizations via leptonic W-decay
- transverse spin asymmetries: Sivers

Significant progress towards a selection of these goals

Detailed breakdown awaits knowledge gained from Run 9

Longitudinal at 200 GeV

- Significant A_{LL} measurement of dijets to constrain Δg(x)
 Completion of 50 pb⁻¹ at 60% polarization (Run 9 BUR request)
- Key step towards completion of 200 GeV program

Longitudinal at 500 GeV

- Significant first measurement of W A_L at mid-rapidity
 Requires 10 pb⁻¹, 50% polarization
- Precision discrimination awaits FGT (Run 12) and later runs

Transverse Polarization

DOE transverse milestone at 200 GeV: HP13 (2015) 15 pb⁻¹, 65% transverse polarization: 50% towards milestone 500 GeV A_N: does the large A_N persist to 500 GeV? 6.5 pb⁻¹, 50% polarization will enable measurement

- Expect to complete first part of the program Run 9
- Need to return in Run 11 for longitudinal portion (5 days)

Summary

- Strong program planned for Runs 10, 11
- New measurement regimes for RHIC
 - Run 10: Critical Point Search at low energies
 - Run 11: Hydrodynamics at high density with U+U
 - Run 11 and beyond: W at 500 GeV
- Major increases in resolving power
 - Run 10: Au+Au with high luminosity and detector improvements
 - Run 11: $\Delta g(x)$ and transverse Sivers via γ -jet

Summary of Beam Use Request

Run	Energy	System	Time	Goal
10 ⁽¹⁾	$\sqrt{s_{NN}}$ =7.7-39 GeV	Au + Au	16 weeks	Critical Point search
	$\sqrt{s_{\rm NN}} = 5 { m GeV}$	Au + Au	1 week ^(a)	Commissioning and first look at data
	$\sqrt{s_{\rm NN}} = 200 { m GeV}$	Au + Au	8 weeks	250M central 300M minbias 2 nb ⁻¹ sampled
11 ⁽²⁾	$\sqrt{s} = 200 \text{ GeV}^{(b)}$	$\begin{array}{c} p_{\rightarrow} p_{\rightarrow} \\ p_{\uparrow} p_{\uparrow} \end{array}$	13 weeks	$\sim 30 \text{ pb}^{-1} \text{ long.}^{(d)}$ 15 pb ⁻¹ transverse
	$\sqrt{s} = 500 \text{ GeV}^{(c)}$	$\begin{array}{c} p_{\rightarrow} \ p_{\rightarrow} \\ p_{\uparrow} \ p_{\uparrow} \end{array}$		15 pb ⁻¹ longitudinal 6.5 pb ⁻¹ transverse
	$\sqrt{s} = 200 \text{ GeV}$	$p_{\rightarrow} p_{\rightarrow}$	5 days	pp2pp at high β^*
	$\sqrt{s_{NN}}=200 \text{ GeV}$	U + U	4 weeks ^(e)	400M events

(1) 30 cryo weeks, 25 weeks production with one species

(2) 25 cryo weeks, 18 weeks production with two species.

(a) C-AD test for higher luminosity at the lower energy

(b) 60% or higher polarization in both yellow and blue rings is needed.

(c) 50% or higher polarization in both yellow and blue ring is needed.

(d) Request is to finish the minimum 50 pb^{-1} goal and make progress towards the portion of

the long-term goal of 80 pb⁻¹ at 60% polarization remaining after Run 9 is completed

(e) Contingent on EBIS operation at moderate rates (5-10 kHz)