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What about
strong interactions?
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Very strict experimental limits exist on 
the amount of global violation of P and 
CP invariances in strong interactions 
(mostly from electric dipole moments)

But: P and CP conservation in QCD is 
by no means a trivial issue 
(“strong CP problem”)

Can a local P and CP violation occur in
QCD matter? 
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local |ˈlōkəl|
adjective
belonging or relating to a particular 
area or neighborhood, typically 
exclusively so 
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QCD is a non-Abelian gauge theory; 

quantum effects at short distances - 
asymptotic freedom.
 

What are the non-Abelian effects on 
the classical dynamics? 



DµF a
µν = 0

(F a
µν)2 = 192ρ4

(x2+ρ2)4

Solution of Yang-Mills equations
in the vacuum

 

.i

Equation:

Solution:
Coupling of
space-time
and color:

A. Polyakov

Even the classical vacuum is not empty 8

Belavin, Polyakov,
Tyupkin, Schwartz
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SU(2) spin

Topology-induced change of chirality

!J = !T + !S

Right        Left
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Topological number fluctuations in QCD vacuum
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Sphaleron transitions
at finite energy or temperature

Sphalerons:
random walk of 
topological charge at finite T:
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Sphaleron transitions
at finite energy or temperature

C. Rebbi,     http://scv.bu.edu/visualization/gallery
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Black hole

D.Son, 
A.Starinets
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Perfect liquid contains fluctuating topological charge
Chern-Simons number
diffusion rate
at strong coupling
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NB: This 
calculation is 
completely 
analogous to the 
calculation of 
shear viscosity 
that led to the 
“perfect liquid”
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Diffusion of Chern-Simons number in QCD: 
real time lattice simulations 

15



NICA

The phase diagram of hot and dense QCD
and the Critical Point
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Experimental tests:
Heavy ion collisions

LHC

NICA, 
JINR
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excess of positive
charge

excess of negative
charge

Electric dipole moment of QCD matter!
DK, Phys.Lett.B633(2006)260 [hep-ph/0406125]

Charge asymmetry w.r.t. reaction plane 
as a signature of strong P violation

Submitted on 10 June 2004



Is there a way to observe topological charge 
fluctuations in experiment?

Relativistic ions create
a strong magnetic field:

H

20
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Heavy ion collisions as a source of the strongest 
magnetic fields available in the Laboratory

DK, McLerran, Warringa
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Heavy ion collisions: the strongest magnetic 
field ever achieved in the laboratory
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The situation is different if the field θ = θ("x, t) varies in space-time.
Indeed, in this case we have

θ ˜F µνFµν = θ∂µJ
µ
CS = ∂µ [θJµ

CS]− ∂µθJ
µ
CS. (16)

The first term on r.h.s. is again a full derivative and can be omitted; intro-
ducing notation

Pµ = ∂µθ = (M, "P ) (17)

we can re-write the Lagrangian (12) in the following form:

LMCS = −1

4
F µνFµν − AµJ

µ +
c

4
PµJ

µ
CS. (18)

Since θ is a pseudo-scalar field, Pµ is a pseudo-vector; as is clear from (18),
it plays a role of the potential coupling to the Chern-Simons current (15).
However, unlike the vector potential Aµ, Pµ is not a dynamical variable and
is a pseudo-vector that is fixed by the dynamics of chiral charge – in our case,
determined by the fluctuations of topological charge in QCD.

In (3+1) space-time dimensions, the pseudo-vector Pµ selects a direction
in space-time and thus breaks the Lorentz and rotational invariance: the
temporal component M breaks the invariance w.r.t. Lorentz boosts, while
the spatial component "P picks a certain direction in space. On the other
hand, in (2 + 1) dimensions there is no need for the spatial component "P
since the Chern-Simons current (15) in this case reduces to the pseudo-scalar
quantity ενρσAνFρσ, so the last term in (18) takes the form

∆L = c MενρσAνFρσ. (19)

This term is Lorentz-invariant although it still breaks parity. In other words,
in (2+1) dimensions the vector "P can be chosen as a 3-vector pointing in the
direction of an ”extra dimension” orthogonal to the plane of the two spatial
dimensions. This illustrates an important difference between the roles played
by the Chern-Simons term in even and odd number of space-time dimensions.
It is well-known that the term (19) leads to a gauge-invariant mass of the
photon; we will also see that it plays an important role in the Hall effect.

4.2. Maxwell-Chern-Simons equations
Let us write down the Euler-Lagrange equations of motion that follow

from the Lagrangian (18),(15) (Maxwell-Chern-Simons equations):

∂µF
µν = Jν − PµF̃

µν . (20)

5

4. Topology-induced effects in electrodynamics:
Maxwell-Chern-Simons theory

4.1. The Lagrangian

Let us begin by coupling the theory (1) to electromagnetism; the resulting
theory possesses SU(3)× U(1) gauge symmetry:

LQCD+QED = −1

4
Gµν

α Gαµν +
∑

f

ψ̄f [iγµ(∂µ − igAαµtα − iqfAµ)−mf ] ψf−

− θ

32π2
g2Gµν

α G̃αµν −
1

4
F µνFµν , (11)

where Aµ and Fµν are the electromagnetic vector potential and the corre-
sponding field strength tensor, and qf are the electric charges of the quarks.

Let us discuss the electromagnetic sector of the theory (11). Electromag-
netic fields will couple to the electromagnetic currents Jµ =

∑
f qf ψ̄fγµψf .

In addition, the term (10) will induce through the quark loop the coupling of
FF̃ to the QCD topological charge. We will introduce an effective pseudo-
scalar field θ = θ(&x, t) (playing the role of the axion field) and write down
the resulting effective Lagrangian as

LMCS = −1

4
F µνFµν − AµJ

µ − c

4
θ ˜F µνFµν , (12)

where
c =

∑

f

q2
fe

2/(2π2). (13)

check the coefficient and sign of AµJµ

This is the Lagrangian of Maxwell-Chern-Simons, or axion, electrodynam-
ics. If θ is a constant, then the last term in (12) represents a full divergence

˜F µνFµν = ∂µJ
µ
CS (14)

of the Chern-Simons current

Jµ
CS = εµνρσAνFρσ, (15)

which is the Abelian analog of (4). Being a full divergence, this term does
not affect the equations of motion and does not affect the electrodynamics.
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From QCD back to electrodynamics:
Maxwell-Chern-Simons theory

23

Axial current
  of quarks

Photons

The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect
Let us consider, following Wilczek [10], a magnetic monopole in the pres-

ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero
charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫

dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-
netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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Maxwell-Chern-Simons 
electrodynamics in action
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S.S. Chern, 1911-2004

J.H. Simons
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θ != 0
!B

!E

θ = 0
q = eθ

π

Figure 1: Magnetic monopole at finite θ angle acquires an electric charge ∼ eθ/π that is
localized on the domain wall where the value of θ changes from zero in the core of the
monopole to some value θ "= 0 away from the monopole (the domain wall is shown by the
gray ring) – the Witten effect.

4.2.2. Charge separation effect
Consider now a configuration shown on Fig. where an external magnetic

field !B pierces a domain with θ "= 0 inside; outside θ = 0. Let us assume first
that the field θ is static, θ̇ = 0. Assuming that the field !B is perpendicular
to the domain wall, we find from (23) that the upper domain wall acquires
the charge density per unit area S of

(
Q

S

)

up

= + c θB (27)

while the lower domain wall acquires the same in magnitude but opposite in
sign charge density (

Q

S

)

down

= − c θB (28)

7

Magnetic monopole 
at finite    : the Witten effect 
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E. Witten;

F. Wilczek
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e

θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will
induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.

8

The Chiral Magnetic Effect I:
Charge separation  
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The formula (29) allows a simple interpretation: since eB/2π is the trans-
verse density of Landau levels of charged fermions in magnetic field B, the
floor of the quantity eB · S/2π (i.e. the largest integer that is smaller than
eB · S/2π) is an integer number of fermions localized on the domain wall.
Each fermion species contributes independently to this number as reflected
by the factor Nf . Again we see that the electric dipole moment (29) arises
from the electric charge q ∼ eθ/π that is induced on the domain walls due
to the variation of pseudo-scalar field θ.

Note that we have started with the Maxwell-Chern-Simons equations with
no external electric charges present. The charges that are induced on the
domain walls have thus been produced from the vacuum. One way to under-
stand this phenomenon is the following. The magnetic field #B is a pseudo-
vector; the chiral anomaly couples it to the chiral charge, and thus mixes
it with the vector electric field #E in the presence of the chiral domain wall.
However the electric field by Gauss theorem cannot exist without electric
charges – therefore the domain walls should acquire an electric charge.

If the domain is due to the fluctuation of topological charge in QCD
vacuum, its size is on the order of QCD scale, L ∼ Λ−1

QCD, S ∼ Λ−2
QCD. This

means that to observe an electric dipole moment in experiment we need
an extremely strong magnetic field eB ∼ Λ2

QCD. Fortunately, such fields
exist during the early moments of a relativistic heavy ion collision; we will
discuss the related phenomenology in Section. Here we have assumed that
the domain is static; this approximation requires the characteristic time of
topological charge fluctuation τ ∼ 1/θ̇ be large on the time scale at which the
magnetic field B varies. This assumption is only marginally satisfied in heavy
ion collisions, and so we now need to consider also the case of M = θ̇ "= 0.

4.2.3. The chiral magnetic effect
Consider now the domain where |#P | #M , i.e. the spatial dependence of

θ(t, #x) is much slower than the dependence on time. Again, we will expose
the domain to an external magnetic field #B with #∇ × #B = 0, and assume
that no external electric field is present. In this case we immediately get
from (22) that there is an induced current

#J = −c M #B = − e2

2π2
θ̇ #B. (30)

9

Note that this current directed along the magnetic field !B represents a P−,
T − and CP− phenomenon and of course is absent in the ”ordinary” Maxwell
equations. Integrating the current density over time (assuming that the field
!B is static) we find that when θ changes from zero to some θ "= 0, this results
in a separation of charge and the electric dipole moment (29).

!B

θ = 0

θ̇ != 0

!J ∼ eθ̇
π · e #B

2π

Figure 3: The chiral magnetic effect – inside a domain with θ̇ "= 0 an external magnetic
field induces an electric current "J ∼ eθ̇/π · e "B/2π. θ̇ "= 0 indicates the change of the chiral
charge inducing an asymmetry between the left– and right– handed fermions inside the
domain. Note that the current "J ∼ "B is absent in Maxwell electrodynamics.

Let us discuss the meaning of formula (30) in more detail. To do this,
let us consider the work done by the electric current; to obtain the work per
unit time – the power P – we multiply both sides of (30) by the electric field
!E and integrate them over the volume (as before, we assume that θ does not
depend on spatial coordinates):

P =

∫
d3x !J · !E = −θ̇

e2

2π2

∫
d3x !E · !B = −θ̇ Q̇5, (31)

10

The chiral magnetic effect II:
chiral induction 
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The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c"P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect
Let us consider, following Wilczek [10], a magnetic monopole in the pres-

ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero
charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫

dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-
netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.

6

DK, L. McLerran, H. Warringa ’07;
K. Fukushima, DK, H. Warringa ‘08



Let all fermions 
be right-handed,
Q = NR -NL > 0

this means the spin
is parallel to momentum.

Magnetic field pins down
the directions of spins

and thus induces 
an electric current

The Chiral Magnetic Effect

+ +

-

-

!H
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Right

µR

Left

µL
µL − µR = 2 θ̇

Figure 4: Dirac cones of the left and right fermions. In the presence of the changing chiral
charge there is an asymmetry between the Fermi energies of left and right fermions µL

and µR: µL − µR = 2µ5 = 2θ̇.

momentum, and we are dealing with the right fermions. Likewise, the nega-
tive fermions will be leftt-handed. After time t, the positive (right) fermions
will increase their Fermi momentum to pF

R = eEt, and the negative (left) will
have their Fermi momentum decreased to pF

L = −pF
R. The one-dimensional

density of states along the axis z that we choose parallel to the direction of
fields !E and !B is given by dNR/dz = pF

R/2π. In the transverse direction, the
motion of fermions is quantized as they populate Landau levels in the mag-
netic field. The transverse density of Landau levels is d2NR/dxdy = eB/2π.
Therefore the density of right fermions increases per unit time as

d4NR

dt dV
=

e2

(2π)2
!E �!B. (35)

The density of left fermions decreases with the same rate, d4NL/dt dV =

12

The chiral charge of quarks
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where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (??) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus

JR = e vF nR; JL = e vF nL. (42)

In (1 + 1) dimensions, the densities are related to the chemical potentials by
µL,R = hvF nL,R, where h is the Planck constant. The net electric current
moving through the wire is therefore

J = JR − JL =
e

h
(µR − µL). (43)

On the other hand, the difference between the chemical potentials for the
left- and right-moving charges is determined by the voltage V applied to the
wire: µR−µL = eV (the anomaly relation tells us that this voltage is created
by the electric field). Therefore, we get

J =
e2

h
V. (44)

Reconciling this with Ohm’s law J = σ V , we find that the conductance σ of
the quantum wire is given by a combination of the fundamental constants:

σ =
e2

h
(45)

5.2. Fermions in external magnetic field

∂µJ
µ =

e2

16π2

(
F µν

L F̃L,µν − F µν
R F̃R,µν

)
(46)

Jµ =
∂ log Z[Aµ, A5

µ]

∂Aµ(x)
(47)

$J =
e

2π2
µ5

$B (48)
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µ5 = A0
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Computing the induced current
Fukushima, DK, Warringa, ‘08

where we have introduced the linear densities of the left- and right-moving
charges.

In a real wire however the electromagnetic fields can propagate in (3+1)
dimensions, while the fermions are restricted to (1 + 1) dimensions. This
means that the chiral charge is still given by (32) and requires the existence
of both electric and magnetic fields. Let us assume that the carriers of charge
move with the Fermi velocity vF . The densities of the right- and left-moving
electric currents are thus
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Chiral chemical potential is formally 
equivalent to a background chiral gauge field:

In this background, vector e.m. current 
is not conserved:

Compute the current through

The result: Coefficient is fixed 
by the axial anomaly, 
no corrections

30
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“Evidence for chiral magnetic effect from lattice gauge theory”,
P. Buividovich, M. Chernodub, E. Luschevskaya, M. Polikarpov,
                                to appear; see also ArXiv 0812.174

SU(2) quenched, Q = 3; Electric charge density (H) - Electric charge density (H=0)

Red - positive charge
Blue - negative charge



P - reflection

P-odd

Charge separation = parity violation:

32



Analogy to P violation in weak interactions

C.S. Wu, 1912-1997
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BUT:
the sign of
the asymmetry
fluctuates 
event by event



+

-

m

k A sensitive 
(but P-even) measure 
of the asymmetry:

S.Voloshin, hep-ph/0406311

Expect 

Charge asymmetry w.r.t. reaction plane: 
how to detect it?

34



35nucl-ex/0510069
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Theory estimates for 
Au-Au collisions

DK, L.McLerran, H.Warringa ‘07

Suppression
of opposite charge
correlations



Charge
asymmetry
w.r.t.
reaction
plane,
~ - akam

Strong P, CP violation at high T ?

Plenary talk by S.Voloshin [STAR Coll.] at Quark Matter ‘0937

+QM’09 Posters 
by E. Finch and
I. Selyuzhenkov;
RHIC/AGS:
J. Thomas;
CPOD: E. Finch



38
S. Voloshin et al [STAR Coll.]; Quark Matter ’09
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Mass number and energy dependences

Talk by E. Finch;
RHIC/AGS: J. Thomas

Expectations for the energy dependence:
slow growth towards low energies
reflecting longer-lived magnetic field,
then gradual disappearance (no QGP):
there has to be a maximum somewhere



NICA

The phase diagram of hot and dense QCD
and the Critical Point
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Interesting physics questions:
1. Do the charge asymmetries disappear at low energies?
    if yes, at what energy? is there a maximum?
    - pin down the critical energy density for deconfinement

2. At low energy, magnetic field can live long enough to affect
   the phase transition -
   what is the influence of magnetic field on the phase transition          
   and the Critical Point? 
   is the chiral phase transition driven first order?
   
3. What happens to the fluctuations in the vicinity of the 
    Critical Point? 
   - “all” size bubbles possible? critical slowing down?
    this would enhance the parity violation signal 
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Topology - Induced Parity violation (TIP)



43 T.Hatsuda

What are the implications for 
the Early Universe?



Magnetic field in M51:
Polarization of emission
Beck 2000

Magnetic fields are abundant
in the Universe at large scales:

3 µG field in Milky Way;

1-40 µG fields in 
clusters of galaxies

What is the origin of 
cosmic magnetic fields?

Is the entire Universe chiral?
e.g. M.Longo, arXiv:0812.3437;
thanks to J.Bjorken
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Primordial magnetic field (E.Fermi, 1949)?

Dynamo in proto-galaxy? Stars? Galaxy?

Domain walls and vortices associated with 
the θ vacua carry magnetic field;

Primordial magnetic field generation at 
the QCD phase transition? 

e.g. 
DK,  R.Pisarski,
M.Tytgat ‘98;

R.Brandenberger,
A.Zhitnitsky’00

What is the origin of magnetic fields 
in the Universe?



1. B violation
2. CP violation
3. Non-equilibrium
      dynamics

A.D. Sakharov,
JETP Lett. 5 (1967) 24

What is the origin  
of the matter-antimatter asymmetry 

in the Universe? 
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1. Generation of Chern-Simons number at the QCD phase transition 
is analogous to baryon number generation in the electroweak 
phase transition

2. Strong CP violation can lead to the separation of matter 
and antimatter in the Universe at the QCD phase transition

e.g. V.Kuzmin, V.Rubakov and M.Shaposhnikov,
       Phys.Lett.B155(1985)36

e.g. R.Brandenberger, I.Halperin and A.Zhitnitsky,
       hep-ph/9903318

DK, A.Zhitnitsky, arXiv 0706.1026
                                      

Baryon asymmetry in the Universe 
and strong CP violation
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Summary

Topological structure of QCD vacuum makes P and CP violation 
possible in strong interactions
Even in the absence of a global parity violation, sphaleron 
transitions in the QGP can induce P-and CP-odd fluctuations
In heavy ion collisions this topology-induced parity violation can 
be observed through the event-by-event charge asymmetries
Since charge asymmetry requires separation of quarks by 
“macroscopic” distance, it is a signature of deconfinement in AA 
collisions; for the electric current to persist, chiral symmetry must 
be restored 
Important implications for the Early Universe 66


