TAR Science for the Coming Decade The STAR Decadal Plan

Outline

- Introduction
- **STAR** through mid-decade
- STAR in the longer term
- eSTAR at eRHIC phase 1
- RHIC during the LHC era

1

Remarkable discoveries at RHIC The first six years

- A+A collisions
 - Jet quenching
 - Perfect liquid
 - Number of constituent quark scaling
 - Heavy-quark suppression
- Polarized p+p collisions
 - Large transverse spin asymmetries in the pQCD regime
- d+A collisions
 - Possible indications of gluon saturation at small x

The discoveries continue

- A+A collisions
 - First ever observations of an anti-hypernucleus and anti-alpha
 - Azimuthal charged-particle correlations that may arise from local strong parity violation
 - Even b-quark production is suppressed in central Au+Au collisions
- Polarized p+p collisions
 - Most precise constraints to date on the polarization of the gluons
- d+A collisions
 - Dramatic broadening of forward π^0 - π^0 correlations in central d+Au
 - Clearest indication to date that the onset of gluon saturation is accessible at RHIC

New research areas continue to open

- **STAR** and **RHIC** continue to **perform very well** under extreme conditions
 - Charge-sign separation to $p_T \sim 50 \text{ GeV}$
 - Au+Au collisions at 7.7 GeV

RHIC: eight key unanswered questions

Hot QCD Matter

- 1: Properties of the sQGP
- 2: Mechanism of energy loss: weak or strong coupling?
- 3: Is there a critical point, and if so, where?
- 4: Novel symmetry properties
- 5: Exotic particles

STAR Decadal Plan – June, 2011 PAC Meeting

Partonic structure

6: Spin structure of the nucleon7: How to go beyond leading twist and collinear factorization?

8: What are the properties of cold nuclear matter?

How to answer these questions

- Hot QCD matter: high luminosity RHIC II (fb⁻¹ equivalent)
 - Heavy Flavor Tracker: precision charm and beauty
 - Muon Telescope Detector: $e+\mu$ and $\mu+\mu$ at mid-rapidity
 - Trigger and DAQ upgrades to make full use of luminosity
- Phase structure of QCD matter: energy scan
 - Electron cooling if lowest beam energies most promising
- Near-term upgrades for p+p collisions
 - Forward GEM Tracker: flavor-separated anti-quark polarizations
 - Forward Hadron Calorimeter: strange quark polarization
 - Roman Pots phase II: search for glueballs
- Nucleon spin and cold QCD matter: high precision p+p and p+A, followed by e+p and e+A
 - Major upgrade of capabilities in forward direction
 - Devote the time to explore p+A, not d+A
 - Existing mid-rapidity detectors well suited for portions of the initial e+p and e+A program, but must extend detection capability to larger rapidities

Summary of the plan

	Near term (Runs 11-13)	Mid-decade (Runs 14-16)	Long term (Runs 17–)
Colliding systems	<i>p+p</i> , A+A	<i>p+p</i> , A+A	<i>p+p</i> , <i>p</i> +A, A+A, <i>e+p</i> , <i>e</i> +A
Upgrades	FGT, FHC, RP, DAQ10K, Trigger	HFT, MTD, Trigger	Forward Instrum, eSTAR, Trigger
(1) Properties of sQGP	Y, J/ ψ $ ightarrow$ ee, $m_{ m ee}$, v ₂	Y, $J/\psi \rightarrow \mu\mu$, Charm v_2 , R_{CP} , corr, Λ_c/D ratio, μ -atoms	<i>p</i> +A comparison
(2) Mechanism of energy loss	Jets, γ-jet, NPE	Charm, Bottom	Jets in CNM, SIDIS, c/b in CNM
(3) QCD critical point	Fluctuations, correlations, particle ratios	Focused study of critical point region	
(4) Novel symmetries	Azimuthal corr, spectral function	e-µ corr, µ-µ corr	
(5) Exotic particles	Heavy anti-matter, glueballs		
(6) Proton spin structure	WA_L , jet and di-jet A_{LL} , intra-jet corr, $(\Lambda + \overline{\Lambda}) D_{LL}/D_{TT}$		$\overline{\Lambda} D_{LL}/D_{TT}$, polarized DIS & SIDIS
(7) QCD beyond collinear fact	Forward A _N		Drell-Yan, F-F corr, polarized SIDIS
(8) Properties of initial state			Charm corr,
	Measurements list	Measurements listed when they first	
	Many will continue in future periods		

STAR through mid-decade

	Near term (Runs 11-13)	Mid-decade (Runs 14-16)	
Colliding systems	<i>p+p</i> , A+A	<i>p+p</i> , A+A	
Upgrades	FGT, FHC, RP, DAQ10K, Trigger	HFT, MTD, Trigger	
(1) Properties of sQGP	Y, J/ ψ $ ightarrow$ ee, $m_{ m ee}$, v_2	Y, $J/\psi \rightarrow \mu\mu$, Charm v_2 , R_{CP} , corr, Λ_c/D ratio, μ -atoms	
(2) Mechanism of energy loss	Jets, γ-jet, NPE	Charm, Bottom	
(3) QCD critical point	Fluctuations, correlations, particle ratios	Focused study of critical point region	
(4) Novel symmetries	Azimuthal corr, spectral function	e-µ corr, µ-µ corr	
(5) Exotic particles	Heavy anti-matter, glueballs		
(6) Proton spin structure	$W A_L$, jet and di-jet A_{LL} , intra-jet corr, (Λ + Λ) D_{LL}/D_{TT}		
(7) QCD beyond collinear fact	Forward A _N		
(8) Properties of initial state			

Mid-rapidity STAR: now to mid-decade

A beautiful detector gets even better!

Where is the QCD critical point?

• The QCD critical point and the 1st order phase transition line represent landmarks on the QCD phase diagram

Narrowing down the region of interest

- 39, 62, and 200 GeV collisions are qualitatively similar
- Even extends to LHC energies
- But many changes appear at lower energies
- Narrowing down the region of interest during Runs 11/12
- Future: need detailed study of the key region
 - Finer energy steps with higher statistics

Novel symmetries: local strong parity violation

- Transitions between domains with different topological charge may induce parity violation in the dense matter
 - Similar transitions (at much higher energies) might have produced the matter-antimatter asymmetry in the early universe
- Magnetic field in A+A plays a key role: chiral magnetic effect
- **Crucial** to verify if parity violation is the **correct explanation**
 - Do results from Beam Energy Scan point to a turn-off?
 - U+U collisions: collisions with more v₂ and less B field than Au+Au

Anti-quark and gluon helicity distributions

- W measurement will significantly reduce uncertainties on anti-quark polarizations
 - At mid-rapidity, STAR just needs the data
 - FGT essential for the forward Ws
- Inclusive jet and di-jet A_{LL} will extend our knowledge of gluon polarization to smaller x
 - Extend measurements to forward rapidities

Accessing strange polarization with Λ

- **STAR** has performed initial $\wedge D_{LL}$ measurements at mid-rapidity
 - Provides access to strange quark helicity distribution
 - Most interesting with quite high $p_T \Lambda$ (trigger and stat limited)
- Similar measurements at forward rapidity are very promising
 - Requires Forward Hadron Calorimeter

Exotic particles at RHIC

- **STAR** has discovered the first anti-hypernucleus and the anti-alpha
- What else is out there?
 - Heaviest anti-matter and anti-hypernuclei
 - π-μ, *K*-μ, p-μ, \overline{p} -μ atoms to isolate the thermal lepton distribution
 - Rare decays
 - Glueballs
 - Di-baryons
 -
- Various measurements depend upon DAQ 10K, MTD, HFT, and the Roman Pots phase II upgrades

Properties of sQGP: charm flow

- Does charm flow hydrodynamically?
 - Low p_T is the hydro domain
- Heavy Flavor Tracker: unique access to low-p_T fully reconstructed charm

Charm diffusion: low p_T matters

More to charm than just D's

- Are charmed hadrons produced via **coalescence**?
 - Heavy Flavor Tracker: unique access to charm baryons
 - Would force a **significant reinterpretation** of non-photonic electron R_{AA}
- Muon Telescope Detector: precision measurements of J/ψ flow

Properties of sQGP: Upsilon

- Muon Telescope Detector: dissociation of Υ, separated by state
 - At RHIC: small contribution from coalescence, so interpretation clean
 - No contribution of Bremsstrahlung tails, unlike electron channel

Properties of sQGP: dileptons

STAR Decadal Plan – June, 2011 PAC Meeting

Counts

10³

10²

10

10⁻¹

10⁻²

- Penetrating probe of the bulk medium
- Correlated charm dominates 1-3 GeV mass region
 - Large uncertainties in pp
 - Different in A+A?
- Address with:
 - HFT: D⁰, displacement
 - MTD: e-µ correlations

Mechanism of partonic energy loss

- Is the mechanism predominantly radiative or collisional?
 - Detailed, fully kinematically constrained measurements via gammahadron and full jet reconstruction
 - Pathlength dependence, especially with U+U
- Does the mechanism depend on the parton type?
 - Gluons: particle identification, especially baryons
 - Light quarks: gamma-hadron
 - Heavy quarks: Heavy Flavor Tracker and Muon Telescope Detector
- Does the energy loss depend on the parton energy and/or velocity?
 - High precision jet measurements up to 50 GeV
 - Vary velocity by comparing light quarks, charm, and bottom
- Example of complementary to LHC
 - RHIC: primarily light quarks for 30 to 50 GeV jets
 - LHC: gluons

To date: jets and γ-hadron in A+A

Jet capabilities in A+A: high p_T

- Smearing of high momentum charged hadrons
 - Evaluated using Wevents
 - Under control to ~30 GeV/c
 - Hard cutoff in hadrons: small loss of jets that fragment hard
 - Dominant uncertainty: fluctuations in the underlying event
- Sufficient statistical reach out to ~50 GeV for precision measurements
 - Large unbiased datasets
 - Trigger upgrades to lessen bias with walking jet patches

Jets in A+A: low p_T

- Both CMS and ATLAS report that jet fragmentation in A+A looks like that in p+p
 - Measurements performed with significant low- p_T cut offs
- STAR sees the "lost" energy
 - Resides in low p_T hadrons
 - Spread over a broad angular region on the away side

Mass dependence via Heavy Quarks

- What is the dependence of energy loss on parton mass?
 - Key tools: heavy quarks with precise kinematic reconstruction
 - Key technology: Heavy Flavor Tracker and Muon Telescope Detector

STAR in the longer term

	Near term (Runs 11-13)	Mid-decade (Runs 14-16)	Long term (Runs 17–)
Colliding systems	<i>р</i> +р, А+А	<i>p+p</i> , A+A	<i>p+p</i> , <i>p+A</i> , A+A, <i>e+p</i> , e+A
Upgrades	FGT, FHC, RP, DAQ10K, Trigger	HFT, MTD, Trigger	Forward Instrum, eSTAR, Trigger
(1) Properties of sQGP	Y, J/ ψ $ ightarrow$ ee, $m_{ m ee}$, v_2	Y, $J/\psi \rightarrow \mu\mu$, Charm v_2 , R_{CP} , corr, Λ_c/D ratio, μ -atoms	<i>p</i> +A comparison
(2) Mechanism of energy loss	Jets, γ-jet, NPE	Charm, Bottom	Jets in CNM, SIDIS, <i>c/b</i> in CNM
(3) QCD critical point	Fluctuations, correlations, particle ratios	Focused study of critical point region	
(4) Novel symmetries	Azimuthal corr, spectral function	e-µ corr, µ-µ corr	
(5) Exotic particles	Heavy anti-matter, glueballs		
(6) Proton spin structure	WA_L , jet and di-jet A_{LL} , intra-jet corr, $(\Lambda + \overline{\Lambda}) D_{LL}/D_{TT}$		$\overline{\Lambda} D_{LL}/D_{TT}$, polarized DIS & SIDIS
(7) QCD beyond collinear fact	Forward A _N		Drell-Yan, F-F corr, polarized SIDIS
(8) Properties of initial state			Charm corr, Drell-Yan, <i>J/ψ</i> , F-F corr, Λ, DIS, SIDIS

Cold QCD matter – the initial state at RHIC

- RHIC may provide unique access to the onset of saturation
- Future questions for p+A
 - What is the gluon density in the (x, Q^2) range relevant at RHIC?
 - What role does saturation of gluon densities play at RHIC?
 - What is Q_s at RHIC, and how does it scale with A and x?
 - What is the impact parameter dependence of the gluon density?

Some planned p+A measurements

- Nuclear modifications of the gluon PDF •
 - Correlated charm production
- Gluon saturation
 - Forward-forward correlations (extension of existing π^0 - π^0)
 - $\frac{h-h}{\pi^0-\pi^0}$ Easier to measure

 - γh $\gamma \pi^0$ Easier to interpret
 - Drell-Yan
 - Able to reconstruct x_1 , x_2 , Q^2 event-by-event
 - Can be compared directly to nuclear DIS
 - True 2 \rightarrow 1 provides model-independent access to $x_2 < 0.001$
 - $-\Lambda$ polarization
 - Baryon production at large x_F
- What more might we learn by scattering *polarized* protons off nuclei?
- Forward-forward correlations, Drell-Yan, and As are also very • powerful tools to unravel the dynamics of forward transverse spin asymmetries – Collins vs Sivers effects, TMDs or Twist-3, ...

STAR forward instrumentation upgrade

- Forward instrumentation optimized for **p+A** and **transverse spin** physics
 - Charged-particle tracking
 - e/h and γ/π^0 discrimination
 - Baryon/meson separation

One spin example: Collins effect in jets

- STAR is measuring the Collins effect by looking at the azimuthal distribution of pions within mid-rapidity jets
- Will perform similar measurements at forward rapidity
 - Most interesting to separate positive and negative hadrons

Options with polarized ³He

- Polarized ³He provides access to polarized neutron scattering
- Interesting in both transverse and longitudinally polarized proton collisions
- If Roman Pots phase II can tag proton spectator(s), would lead to a dramatic increase in measurement sensitivity
- Very important technological development on the way to eRHIC

$STAR \rightarrow eSTAR$

Optimizing **STAR** for e+p and e+A collisions from 5+50 to 5+325 GeV

- Inclusive scattering over the entire deep-inelastic region
 - Key measurements
 - *F_L* in e+p and e+A: direct measure of gluon densities in nucleons and nuclei
 - g_1 in e+p and e+³He: nucleon spin structure
 - F_2^{A}/F_2^{d} : parton distributions in nuclei (including gluons via Q^2 evolution)
- Semi-inclusive deep-inelastic scattering over a broad (*x*,*Q*²) domain
 - Key measurements
 - Flavor-separated helicity distributions, including strangeness
 - Collins, Sivers, Boer-Mulders, and other transverse spin distributions
 - Flavor-separated parton distributions in nuclei, including strangeness
 - Parton energy loss in cold nuclear matter

- Deeply-virtual Compton scattering
 - Key measurement
 - GPDs
- What's needed?

eRHIC phase 1: kinematic range

- "Forward" (-2.5 <~ η < -1) electron acceptance essential to span deep-inelastic (DIS) regime
- Both backward and forward hadron coverage valuable for semiinclusive deep-inelastic (SIDIS) scattering

Parton energy loss in cold QCD matter

- Complementary tool to investigate partonic energy loss
- HERMES: hadrons can form partially inside the medium
 - Mixture of hadronic absorption and partonic energy loss
- eRHIC: light quark hadrons form well outside the medium
- Heavy quarks: unexplored to date. Low $\beta \rightarrow$ short formation time

Beyond DIS: DVCS

Further possibilities under investigation: diffraction in J/ψ , ...

$STAR \rightarrow eSTAR$

Optimizing **STAR** for e+p and e+A collisions from 5+50 to 5+325 GeV

- Inclusive scattering over the entire deep-inelastic region
 - Key measurements
 - *F_L* in e+p and e+A: direct measure of gluon densities in nucleons and nuclei
 - g_1 in e+p and e+³He: nucleon spin structure
 - F_2^{A}/F_2^{d} : parton distributions in nuclei (including gluons via Q^2 evolution)
 - Need electron detection, ID, and triggering over -2.5 <~ η < -1
 - Combined mini-TPC/threshold gas Cherekov detector
- Semi-inclusive deep-inelastic scattering over a broad (*x*,*Q*²) domain
 - Key measurements
 - Flavor-separated helicity distributions, including strangeness
 - Collins, Sivers, Boer-Mulders, and other transverse spin distributions
 - Flavor-separated parton distributions in nuclei, including strangeness
 - Parton energy loss in cold nuclear matter
 - Need hadron detection and identification beyond the TPC/EEMC
 - Extend TOF to cover $-2 < \eta < -1$
 - GEM disks (from forward instrumentation upgrade) plus hadronic calorimetry in the region $2 < \eta < 3$
- Deeply-virtual Compton scattering
 - Key measurement
 - GPDs
 - Need forward proton and expanded photon detection
 - Roman pots (also valuable for spectator proton tagging in e+³He)
 - EM calorimetry for -4 < η < -1

Evolving from **STAR** into **eSTAR**

RHIC in the LHC era

- Unique measurements at RHIC
 - Exploring the onset of saturation
 - · Study the turn-on to elucidate the underlying dynamics
 - Searching for the QCD critical point and the 1st order phase transition line using collider detectors
 - Changes in the **qualitative response** of the matter appear below 39 GeV
 - World's only polarized hadron collider
- Unique until LHC detectors upgrade
 - Open charm in the hydrodynamic domain
- **STAR** Decadal Plan June, 2011 PAC Meeting

20 30

√s_{NN} (GeV)

3 4 5 6

10

100

200

RHIC in the LHC era

- Some measurements with easier interpretation at RHIC energies
 - Y production
 - Entirely primordial at RHIC
 - Contribution from recombination at LHC ?
 - Response of the medium to a jet
- Example of complementarity
 - Light quark jets
 - Dominate above $p_T \sim 30$ GeV/c at RHIC
 - Only accessible via tagging at LHC

Conclusions

- The STAR Collaboration has identified compelling physics opportunities for the coming decade
 - Eight key questions
- The STAR Collaboration has identified the detector upgrades required to address these opportunities
- The path forward:
 - Early in the decade: physics with low mass in the central region
 - Mid decade: physics of the HFT and MTD
 - Later in the decade: physics in the forward region
 - End of the decade: early phase of eRHIC
- STAR has a vision for the future that will produce important new results well into the eRHIC era

Key unanswered questions

- What is the nature of QCD matter at the extremes?
 - What are the properties of the strongly-coupled system produced at RHIC, and how does it thermalize?
 - Are the interactions of energetic partons with QCD matter characterized by weak or strong coupling? What is the detailed mechanism for partonic energy loss?
 - Where is the QCD critical point and the associated first-order phase transition line?
 - Can we strengthen current evidence for novel symmetries in QCD matter and open new avenues?
 - What other exotic particles are produced at RHIC?
- What is the partonic structure of nucleons and nuclei?
 - What is the partonic spin structure of the proton?
 - How do we go beyond leading twist and collinear factorization in perturbative QCD?
 - What is the nature of the initial state in nuclear collisions?