PHENIX Beam Use Proposal for Runs 12 & 13

run	species	$\sqrt{\mathbf{s}_{NN}}$	weeks	$\int \mathbf{I}$	dt	pol.	comments
				$ \mathbf{z} < 30\mathrm{cm}$	$ \mathbf{z} < 10cm$		
	$p{+}p$	200	5	$13.1pb^{-1}$	$4.7 \ pb^{-1}$	60% (T)	HI comparison, \perp spin
	$p\!+\!p$	500	8	$100pb^{-1}$	$35 \ pb^{-1}$	50% (L)	W program + ΔG
12	Au+Au	200	7		$0.8nb^{-1}$		heavy flavor (F/VTX)
	U + U	193	1.5		$0.03 nb^{-1}$		explore geometry
	Au+Au	27	1	$5.2\mu b^{-1}$			energy scan
	$p{+}p$	500	10	$200pb^{-1}$	$74 \ pb^{-1}$	60% (L)	W program
13	$p\!+\!p$	200	5	$20pb^{-1}$	$4.7 pb^{-1}$	60% (T)	HI comparison
	Cu+Au	200	5		$2.4 nb^{-1}$		control geometry
	U + U	193	5		$0.57 nb^{-1}$		explore geometry

Barbara Jacak for the PHENIX Collaboration

http://www.phenix.bnl.gov/WWW/publish/jacak/sp/presentations/BeamUse11/BUP11.pdf

The PHENIX Experiment

 An excellent track record for Major upgrade(s) most years
 Sustained scientific productivity
 Handling >1pbyte data sets

Fully utilize RHIC luminosity
 Data rate maintained w/VTX
 ~5kHz (AuAu), ~7kHz(p+p)

Timely reconstruction
 calibrate within ~1-2 days
 data sets produced by next run

Unprecedented Reach and Precision

Superb particle ID, high rate capability and excellent trigger: broad physics capabilities over a large kinematic range 3

Recent Physics Accomplishments

New papers and preliminary results*

- Pin down initial state using d+Au collisions
- First new constraints on η/s
- Discovery of direct photon flow
- Measure W cross section, first look at A_L
- J/ψ suppression at 62 GeV
- PHENIX submitted 16 papers for publication in the past 12 months
- We published 12 + 1 in proofs
- ~35-40 preliminary analysis results

Over 10K citations of PHENIX papers

Citation rate remains high, as in past years

NB: White paper has 1079 citations; jet quenching discovery paper has 584

Fluctuations, flow and the quest for η /s

arXiv:1105.3928

Direct photons flow!

arXiv:1105.4126

Flow magnitude is a real surprise!

9

J/ψ suppression at 62 GeV!

arXiv:1103.6269

No obvious pattern of the suppression with energy density.

To understand color screening: see as function of \forall s, p_T, **r**_{onium} + d+Au to disentangle cold matter effects

First publication of W's at RHIC

- Measure σ , first look at A_L with electrons in Run-9
- Starting with Run-11: precision W-> μ

Other papers in the past year

- J/ψ, ψ', χ_c 1105.1966
- ω production in pp,dAu, CuCu, AuAu 1105.3467
- J/ψ suppression at high p_T 1103.6269
- Identified hadron spectra in p+p 1102.0753
- Away jet suppression vs. reaction plane 1010.1521
- J/ ψ supression in cold nuclear matter 1010.1246
- hadron cluster ALL 1009.4921
- electron-hadron correlations PRC83, 044912 (2011)
- meson m_T scaling in p+p PRD83, 052004 (2011)
- φ R_{AA} PRC83, 024909 (2011)
- η σ and ALL PRD83, 032001 (2011)
- J/ψ A_N PRD82, 112008 (2010)
- γ-h correlations in p+p PRD82, 012001 (2010)
- π^0 vs. reaction plane *PRL105*, 142301 (2010)

Where we are now?

HBD analysis is underway

N _o ideal value	714 cm ⁻¹
Optical transparency of mesh	88.5 %
Optical transparency of photocath.	81.0 %
Radiator gas transparency	89.0 %
Transport efficiency	80.0 %
Reverse bias and pad threshold	90.0 %
N _o calculated	328 +/- 46 cm ⁻¹
N _{pe} expected	20.4 +/- 2.9
N _{pe} measured	20
N ₀ measured value	330 cm ⁻¹

The highest ever measured N₀!

Maintained for 2 years

- •Single electron charge peaks at 20 pe
- Double electron charge peaks at ~40 pe
- **→Good single to double separation**

M. Makek, QM2011

In central Au+Au, must deal with scintillation light. rejection of π^0 Dalitz electrons and upstream conversions

- Subtract <pe> to reject scintillation γ
- Then, can reject upstream conversions and π⁰ Dalitz pairs with single/double charge cut
- This requires good gain calibration throughout the entire run
- Single electron hits studied w/ MC
 - ϕ ->e⁺e⁻ emebedded in Au+Au data
- ***** Double electron hits studied using MC π^{0} -> $\gamma\gamma$ emebedded in Au+Au data
- Background normalization is underway

Run 10 Au+Au *e+e- pair spectrum soon*

VTX is installed and commissioned

- Successfully commissioned in 2011 p+p run
- Taking data in Au+Au now Opens era of c/b separated R_{AA}, v₂ at RHIC !

 DAQ upgrades (incl. DCMII, new EVB switch): maintain same data rate! ~7 kHz p+p and 5 kHz Au+Au

A peek inside the VTX

FVTX construction underway

C fiber structure

Forward y
 open heavy
 flavor physics
 ψ' in AuAu
 & dAu

Fully Populated Large Disk

F dEx

Wedge test

On track

to install for Run-12

Muon Trigger Upgrade

Muon arm background reduction

Stainless steel SS-130 absorbers, 12 tons each side (!) 2 interaction lengths, based upon simulations

Installed on both muon arms during 2010 shutdown

Rejection power ~1100 @ 2.7MHz S/B~1/2 first look Anticipate 3/1 after tuning

Compelling physics questions*

* utilizing new PHENIX capabilities + RHIC luminosity (stochastic cooling)

* informed by new insights from RHIC & LHC

Mysteries in heavy ion physics

- NSAC milestone DM11, 12 Energy loss mechanism @ LHC 40 GeV jets opposing 100 GeV jets look "normal" no broadening or decorrelation no evidence for collinear radiation from the parton **@** RHIC low energy jets appear to show medium effects but, "jet" is defined differently \rightarrow c & b to probe role of collisional energy loss VTX, FVTX \rightarrow quantify path length dependence U+U, Cu+Au \bullet J/ ψ suppression and color screening **NSAC milestone DM5** amazingly similar from Vs=17-200 GeV; but initial states differ not SO different at LHC
 - → Other states y & Vs dependence (e.g. ψ ') FVTX, statistics
 - → d+Au for initial state; 130 GeV Au+Au eventually?

η /s vs. Vs, using v₂ + v₃ + hydro

500 GeV p+p: π⁰ A_{LL} to constrain Δg (0.01<x<0.3) NSAC milestone HP12 central/forward correlations tag kinematics NSAC milestone HP8
 W A_L at forward, backward, mid rapidity for Δu, Δu, Δd, Δd

Transverse single spin asymmetries

 A_N ~ 0 at mid-y, large at forward rapidity. Why?? Initial state correlations between k_T & p spin? (Sivers)
 Spin dependent fragmentation functions? (Transversity x Collins)
 Effects at sub-leading twist? (Qiu, Sterman)

NSAC milestone HP13 (sign change in Sivers asymm. in DY) requires 125 pb⁻¹ in PHENIX

PHENIX beam use proposal

	run	species	$\sqrt{s_{NN}}$	weeks	$\int \mathbf{L} \mathbf{dt}$		pol.	comments
					$ \mathbf{z} < 30\mathrm{cm}$	$ \mathbf{z} < 10cm$		
		$p{+}p$	200	5	$13.1pb^{-1}$	$4.7 \ pb^{-1}$	60% (T)	HI comparison, \perp spin
		$p\!+\!p$	500	8	$100pb^{-1}$	$35 pb^{-1}$	50% (L)	W program + ΔG
	12	Au+Au	200	7		$0.8 nb^{-1}$		heavy flavor (F/VTX)
		U+U	193	1.5		$0.03 nb^{-1}$		explore geometry
		Au+Au	27	1	$5.2\mu b^{-1}$			energy scan
	12	$p{+}p$	500	10	$200pb^{-1}$	$74 \ pb^{-1}$	60% (L)	W program
		$p{+}p$	200	5	$20pb^{-1}$	$4.7 \ pb^{-1}$	60% (T)	HI comparison
	15	Cu+Au	200	5		$2.4 nb^{-1}$		control geometry
		U+U	193	5		$0.57 nb^{-1}$		explore geometry

<u>NB for Run-13 (Adds up to 30 cryo weeks)</u> Relative priority of CuAu, UU, more AuAu TBD by Run-12 results

PHENIX beam use proposal

run	species	$\sqrt{s_{NN}}$	weeks	$\int \mathbf{L} \mathbf{dt}$		pol.	comments
				$ \mathbf{z} < 30\mathrm{cm}$	$ \mathbf{z} < 10cm$		
	$p{+}p$	200	5	$13.1 pb^{-1}$	$4.7 \ pb^{-1}$	60% (T)	HI comparison, \perp spin
	p + p	500	8	$100pb^{-1}$	$35 pb^{-1}$	50% (L)	W program + ΔG
12	Au+Au	200	7		$0.8 nb^{-1}$		heavy flavor (F/VTX)
	U+U	193	1.5		$0.03 nb^{-1}$		explore geometry
	Au+Au	27	1	$5.2\mu b^{-1}$			energy scan

Additions if we get a longer Run-12 (in priority order)

1.5 week of 62.4 GeV p+p for J/ ψ & open heavy q R_{AA} 1.5 week of 39 GeV p+p for π^0 R_{AA} Add 1 week to 27 GeV Au+Au to improve reach

Ordering request

We request to run 200 GeV p+p first FVTX commissioning avoid letting any downtime affect W program **RPC1** commissioning be ready for the W measurement **Polarization development time (?)** may help optimize machine performance for 500 GeV Then 500 GeV p+p Followed by low energy comparison running, if \$ permit Switch to ions Do 200 GeV Au+Au first Probably should follow with 27 GeV Au+Au lower priority for PHENIX than U+U test

How well will we do?

Run-12 top priority: progress on W program

50% polarization performance

Constrain dbar/ubar with W+/W- ratio

<u>A concern</u>

RHIC performance for 500 GeV polarized p+p
 Not up to the usual RHIC standards
 We only got JLdt=18pb⁻¹ within our vertex cut of 30cm
 Polarization was ~ 50%

- 300 pb⁻¹ in 30 cm is necessary for impactful measurement!
 Plots are for 55% polarization; current performance is close to what's needed
- Can this program be completed in 2 years?
 NSAC milestone HP8 is set for 2013
 If we do not reach in 2 years, will request one more run

х

-0.002

2

Small ∆G: a challenge!
500 GeV reaches lower x
with higher luminosity

10⁻¹

10⁻²

Uncertainties for Run-12 only; vertex cut of 10cm

8

10

12

10⁻³

14 16 pT (GeV/c)

200 GeV p+p in Run-12+13

Run-12 next priority: 200 GeV Au+Au

- Utilize our new silicon detectors
 Key data set with VTX Au+Au and p+p comparison
 First run with FVTX to look at forward rapidity
- The era of separated charm and bottom measurements Help constrain energy loss mechanism radiative energy loss differs; role of collisions? compare with AdS/CFT picture Heavy quark diffusion: different, sensitive probe of η/s Also important to measure ψ' at forward rapidity help sort out initial state effects vs. dissociation (I don't believe in accidental cancellations...)

3rd priority: 200 GeV p+p comparison for c, b R_{AA}

data from Run-11 is not yet known

Run-12 FVTX physics

Run-12 Goals:

- Commission
- Collect first part of the data set at left
- ~1/6 of 4.6 nb⁻¹ minbias

 One run already has discriminating power for energy loss models

FVTX performance simulations

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

c,b coverage

Fit DCA distribution in each p_{τ} bin with sum of individual c, b contributions. Iterate to constrain D and B p_{τ} distributions.

4th priority: U+U "engineering" run: 0.5 + 1.5 wk

5th priority: 27 GeV Au+Au

5th priority: low E p+p comparison

- Currently we rely upon extrapolation for 62 GeV
 Considerable uncertainty for R_{AA}
 Unavailable for heavy flavor electrons or J/ψ
- 62 GeV requirements
 4.5 pb⁻¹ p+p equiv. Au+Au * R_{AA}=0.25 →1.1 pb⁻¹
 4.8 x10³⁰ /cm²/sec →0.124 pb⁻¹ per day → 9 days
- 39 GeV requirements
 - Rate is half as large; $\pi^0 R_{AA}=0.4 @ p_T=3.5 \text{ GeV/c}$
 - 1.6 pb⁻¹ p+p equiv. Au+Au * R_{AA} =0.4 \rightarrow 0.64 pb⁻¹ \rightarrow 10 days
- NB: It may be preferable to live with interpolating 39 (and 27) GeV p+p if we pin down at 20 GeV

Run-13 Physics goals

Reach 300 pb-1 sampled for W in 500 GeV p+p

- 200 GeV p+p for VTX, FVTX comparison and transverse spin physics
- Control geometry to quantify path length dependence U+U if successfully demonstrate selection cuts 5 weeks for JLdt=0.57nb⁻¹ in 10cm (4B mb U+U events) First Cu+Au collisions
- May replace one of these with full energy Au+Au
 Depends on FVTX commissioning in Run-12

Cu+Au: 2.4 nb⁻¹ into 10 cm vertex cut

- Cu buried inside Au for most central collisions
 Minimize effects of the surface on hard probes select top 3% centrality for this (300M events)
- Eccentricity without left/right symmetry for non-central collisions

Non-fluctuation source of odd harmonics

PHENIX beam use proposal

run	species	$\sqrt{s_{NN}}$	weeks	$\int \mathbf{L} \mathbf{dt}$		pol.	comments
				$ \mathbf{z} < 30\mathrm{cm}$	$ \mathbf{z} < 10cm$		
	$p{+}p$	200	5	$13.1 pb^{-1}$	$4.7 \ pb^{-1}$	60% (T)	HI comparison, \perp spin
	$p\!+\!p$	500	8	$100pb^{-1}$	$35 pb^{-1}$	50% (L)	W program + ΔG
12	Au+Au	200	7		$0.8 nb^{-1}$		heavy flavor (F/VTX)
	U+U	193	1.5		$0.03 nb^{-1}$		explore geometry
	Au+Au	27	1	$5.2\mu b^{-1}$			energy scan

Additions if we get a longer Run-12 (in priority order)

1.5 week of 62.4 GeV p+p for J/ ψ & open heavy q R_{AA} 1.5 week of 39 GeV p+p for π^0 R_{AA} Add 1 week to 27 GeV Au+Au to improve reach

backup slides

Direct photon flow ingredients

Key cross checks:
 γinc are really γ's:
 check using γ-> e+e Rγ for virtual vs. real γ

Ph.D. theses

Basis for time estimates

$\sqrt{s_{NN}}$	ave.lumi.	σ (b)	Events/Day	Events/Day
_	$(cm^{-2}sec^{-1})$		in 30 cm	in 10 cm
Au+Au				
18	$6.00 \text{ E}{+}25$	6.8	$3.73 \mathrm{~M}$	$1.24 \mathrm{~M}$
27	$8.00 \text{ E}{+}25$	6.8	$4.98 {\rm M}$	$1.66 {\rm M}$
p+p				
22	$2.50 \text{ E}{+}29$	0.03	$68.6 {\rm M}$	$22.9 \mathrm{M}$
27	$6.00 \text{ E}{+}29$	0.032	$176 {\rm M}$	$58.5 \mathrm{M}$
39	$2.40 \text{ E}{+}30$	0.033	$724 \mathrm{~M}$	$241 \mathrm{M}$
62	$4.80 \text{ E}{+}30$	0.0356	$1.56 \mathrm{~B}$	$521 \mathrm{~M}$

• Projections from W. Fischer

HBD performance: figure of merit N₀ and single electron detection efficiency

The average number of photo-electrons N_{pe} in a Cherenkov counter:

 $N_{pe} = N_0 L / \bar{\gamma}_{th}^2$

with:

- $N_0 = \frac{\alpha}{hc} \int \varepsilon(E) dE = 714 \text{ cm}^{-1}$ $\overline{\gamma}_{th} = 29$
- bandwidth: 6.2 eV (CsI photocathode threshold) - 11.5 eV (CF₄ cut-off)

N _o ideal value	714 cm ⁻¹					
Optical transparency of mesh	88.5 %					
Optical transparency of photocath.	81.0 %					
Quantum efficiency kept constant during the two years of operation!						
The highest ever mea	sured N _o !					
N _{pe} measured	20					
	20					

The high photoelectron yield \rightarrow excellent single electron detection efficiency:

- → Single electron efficiency using a sample of open Dalitz decays: $\varepsilon \sim 90$ %
- → Single electron efficiency derived from the J/ Ψ region: $\epsilon = 90.6 \pm 9.9$ %

CF₄: good N₀ but it also scintillates

Analysis steps (being optimized now):

- 1. Subtract underlying event
- Reject electrons created downstream of the HBD
- 3. Reject π^0 Dalitz, conversions created upstream

MC study: Matching to HBD only:

 $S/B \rightarrow 8.4 S/B$

3500 3000 2500	Origin of electrons	Electrons/event Central Arms	Electrons/event Central Arms + HBD	Efficiency	Rejection
2000	Signal	0.17	0.14	0.83	
1500	Downstream convers.	0.85	0.09		9.7
	Misidentified hadrons	0.33	0.07		4.7
$0^{-10} 0^{-10}$	Other electrons	0.22	0.15		1.5
	Cluster charge	e (p.e)			

M. Makek, QM2011

Low energy p+p comparison running

heavy quark suppression & flow?

Jet suppression in Run-10

Cold Nuclear Matter (CNM) and Low-x Partons in Nuclei

other probes of shadowing & gluon saturation - forward hadrons

Mono-jets in the gluon saturation (CGC) picture give suppression of pairs per trigger and some broadening of correlation *Kharzeev, NPA 748, 727 (2005)*

PH米ENIX

ny 1.4 B⁰ 1.4

0.8

0.6

0.4 0.2 39 62 200

PS09 NLO Q²-13.0 GeV

Error sets 2-31

Universidade de São Paulo, Instituto de Física, Caixa Postal 66318, São Paulo CEP05315-970, Brazil Institute of Physics, Academia Sinica, Taipei 11529, Taiwan China Institute of Atomic Energy (CIAE), Beijing, People's Republic of China Peking University, Beijing, People's Republic of China Charles University, Ovocnyth 5, Praha 1, 116 36, Prague, Czech Republic Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic hstitute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8, Czech Republic Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland Dapnia, CEA Saday, F-91191, Gif-sur-Yvette, France Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128, Palaiseau, France Laboratoire de Physique Corpusculaire (LPC), Université Blaise Pascal, CNRS-IN2P3, Clermont-Fd, 63177 Aubiere Cedex, France IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406, Orsay, France SUBATECH (Ecole des Mines de Nantes, CNRS-IN2P3, Université de Nantes) BP 20722 - 44307, Nantes, France Institut für Kemphysik, University of Münster, D-48149 Münster, Germany Debrecen University, H-4010 Debrecen, Egyetem tér 1, Hungary ELTE, Eötvös Loránd University, H - 1117 Budapest, Pázmány P. s. 1/A, Hungary KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences (MTA KFKI RMKI), H-1525 Budapest 114, POBox 49, Budapest, Hungary Department of Physics, Banaras Hndu University, Varanasi 221005, India Bhabha Atomic Research Centre, Bombay 400 085, India Weizmann Institute, Rehov ot 76100, Israel Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Burkyo, Toky o 113-0033, Japan Hroshima University, Kagamiyama, Higashi-Hiroshima 739-8526. Japan KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan Ky oto University, Ky oto 606-8502, Japan Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan RIKEN. The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan hstitute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan Chonbuk National University, Jeoniu, Korea Ew ha Womans University, Seoul 120-750, Korea Hany ang University, Seoul 133-792, Korea KAERI, Cyclotron Application Laboratory, Seoul, South Korea Korea University, Seoul, 136-701, Korea Myongii University, Yongin, Kyonggido 449-728, Korea System Electronics Laboratory, Seoul National University, Seoul, South Korea Yonsei University, IPAP, Seoul 120-749, Korea IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russia Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia Russian Research Center "Kurchatov hstitute", Moscow, Russia PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia Saint Petersburg State Polytechnic University, St. Petersburg, Russia Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, Russia Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden

Abilene Christian University, Abilene, TX 79699, U.S. Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973-5000, U.S. Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, U.S. University of California - Riverside, Riverside, CA 92521, U.S. University of Colorado, Boulder, CO 80309, U.S. Columbia University, New York, NY 10027 and Nev is Laboratories, Irvington, NY 10533, U.S. Florida Institute of Technology, Melbourne, FL 32901, U.S. Florida State University, Tallahassee, FL 32306, U.S. Georgia State University, Atlanta, GA 30303, U.S. University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S. bw a State University, Ames, IA 50011, U.S. Law rence Livermore National Laboratory, Livermore, CA 94550, U.S. Los Alamos National Laboratory, Los Alamos, NM 87545, U.S. University of Maryland, College Park, MD 20742, U.S. Department of Physics, University of Massachusetts, Amherst, MA 01003-9337, U.S. Morgan State University, Baltimore, MD 21251, U.S. Muhlenberg College, Allentown, PA 18104-5586, U.S. University of New Mexico, Albuquerque, NM 87131, U.S. New Mexico State University, Las Cruces, NM 88003, U.S. Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S. Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S. RIKEN BNL Research Center, Brookhav en National Laboratory, Upton, NY 11973-5000, U.S. Chemistry Department, Stony Brook University, Stony Brook, SUNY, NY 11794-3400, U.S. Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY 11794, U.S. University of Tennessee, Knoxville, TN 37996, U.S. Vanderbilt University, Nashville, TN 37235, U.S.

Futu	ire HI	Year	#	Milestone
Mile	stones	2009	DM4	Perform realistic three-dimensional numerical simulations to describe the medium and the conditions required by the collective flow measured at RHIC.
	PH [*] ENIX	2010	DM5	Measure the energy and system size dependence of J/\production over the range of ions and energies available at RHIC.
	PHIENIX	2010	DM6	Measure e^+e^- production in the mass range $500 \le m_{e^+e^-} \le 1000 \text{ MeV/c2}$ in $\sqrt{s_{NN}} = 200 \text{ GeV}$ collisions.
Requires	upgrade	2010	DM7	Complete realistic calculations of jet production in a high density medium for comparison with experiment.
	PHENIX	2012	DM8	Determine gluon densities at low x in cold nuclei via $p + Au$ or $d + Au$ collisions.
	PHKENIX	2015	DM9 (new)	Measure bulk properties, particle spectra, correlations and fluctuations in Au + Au collisions at $\sqrt{s_{NN}}$ from 5 to 40 GeV to search for evidence of a critical point in the QCD matter phase diagram.
		2014	DM10 (new)	Perform calculations including viscous hydrodynamics to quantify, or place an upper limit on, the viscosity of the nearly perfect fluid discovered at RHIC.
	PHKENIX	2014	DM11 (new)	Measure jet and photon production and their correlations in A \approx 200 ion+ion collisions at energies from $\sqrt{s_{NN}} = 30$ GeV up to 5.5 TeV.
	PHKENIX	2016	DM12 (new)	Measure production rates, high pT spectra, and correlations in heavy-ion collisions at $\sqrt{s_{NN}} = 200$ GeV for identified hadrons with heavy flavor valence quarks to constrain the mechanism for parton energy loss in the quark-gluon plasma.
	PHKENIX	2918	DM13 (new)	Measure real and virtual thermal photon production in p + p, d + Au and Au + Au collisions at energies up to $\sqrt{s_{NN}} = 200$ GeV.

Spin Physics Milestones

ΔG not large: sea quarks polarized? d vs. u?

р

Probe Δq - Δq via W production

$$\Delta d + \overline{u} \rightarrow W^{-}$$
$$\Delta \overline{u} + d \rightarrow W^{-}$$
$$\Delta \overline{d} + u \rightarrow W^{+}$$
$$\Delta u + \overline{d} \rightarrow W^{+}$$

100% Parity-violating:
$$-\mathbf{A_L} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

unpol.

Start: 2009(tests)/2010(trigger) with 500 GeV $p+p_{_{63}}$

Barrel VTX Detector

Specifications:

Large acceptance ($\Delta \phi \sim 2 \pi$ and $|\eta| < 1.2$) Displaced vertex measurement $\sigma < 40 \mu m$ Charged particle tracking $\sigma_p/p \sim 5\%$ p at high pT Detector must work for both HI and pp collisions.

Technology Choice

Hybrid pixel detectors developed at CERN for ALICE

Strip detectors, sensors developed at BNL with FNAL's SVX4 readout chip

Forward Silicon Vertex Detector - FVTX

FVTX Specifications:

- 2 endcaps
- 4 pixelpad layers/endcap
- ~550k channels/endcap
- Electronics a mod of BTeV readout chip
- Fully integrated mech design w/ VTX
- 2π coverage in azimuth and 1.2
 < | η | < 2.4
- Better than 100 μm displaced vertex resolution

Forward Silicon Vertex Detector - FVTX

Enhanced x coverage

Physics Program of FVTX includes

- Resolving J/ ψ and ψ ' in Muon arms
- Resolving Υ at y=0 using Muon arms
- Direct measure of B meson through displaced J/ψ
- Drell-Yan Measurements in dAu at both forward and midrapidities
- c, b ID for both HI physics & ΔG spin measurements
- Nuclear modification factor (CGC effects) in dAu using hadrons, c, b, and J/ ψ

c, b suppression at forward η

Direct measure of B

J/w

-0.2 - 0.1

Beauty Decays to J/psi

Reconstructed

Vertex Position

 J/Ψ

/100

